`SDMS US EPA Region V

Imagery Insert Form

Document ID:

Some images in this document may be illegible or unavailable in SDMS. Please see reason(s) indicated below:

		Specify Type of Doc	ument(s) / Commen	ts:
Some	text	appears	lighter	-Bench-Scale Stud
Unless otherwis	se noted, these pag	RESOLUTION vari- ges are available in mor available for viewing a	ochrome. The source	e document page(s) is more legible theords Center.
		Specify Type of Doo	cument(s) / Comme	nts:
	· .	ensitive information. D	-	, materials with such information are r
	contains highly se	ensitive information. D	Manager if you wish	n to view this document.
	contains highly se	ensitive information. D PA Superfund Records	Manager if you wish	n to view this document.
in SDMS. You r	contains highly se nay contact the E	ensitive information. D PA Superfund Records	Manager if you wish	n to view this document.
unscannable Ma Oversized Due to certain	contains highly se may contact the E aterial: or scanning equipments	ensitive information. DPA Superfund Records Specify Type of Doo mat.	Manager if you wish cument(s) / Commen	n to view this document.
Unscannable Ma Oversized Due to certain	contains highly se may contact the E aterial: or scanning equipments	ensitive information. DPA Superfund Records Specify Type of Documents mat. ent capability limitation g at the Superfund Records	Manager if you wish cument(s) / Commen	n to view this document. nts: ne(s) is not available in SDMS. The or
Unscannable Ma Oversized Due to certain	contains highly se may contact the E aterial: or scanning equipments	ensitive information. DPA Superfund Records Specify Type of Documents mat. ent capability limitation g at the Superfund Records	Manager if you wish cument(s) / Comment ns, the document page ords center.	n to view this document. nts: ne(s) is not available in SDMS. The or
Unscannable Ma Oversized Due to certain	contains highly se may contact the E aterial: or scanning equipments	ensitive information. DPA Superfund Records Specify Type of Documents mat. ent capability limitation g at the Superfund Records	Manager if you wish cument(s) / Comment ns, the document page ords center.	n to view this document. nts: ne(s) is not available in SDMS. The or
Unscannable Ma Oversized Due to certain document is av	contains highly se may contact the E aterial: or For scanning equipmontailable for viewing	ensitive information. DPA Superfund Records Specify Type of Documents mat. ent capability limitation g at the Superfund Records	Manager if you wish cument(s) / Comment ns, the document page ords center. f Document(s) / Con	n to view this document. nts: ne(s) is not available in SDMS. The or

Canonielminnenta

APRIL 1993

92-530-01

BENCH-SCALE TREATABILITY STUDY SOILTECH ANAEROBIC THERMAL PROCESS AMERICAN CHEMICAL SERVICES NPL SITE GRIFFITH, INDIANA

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	i
LIST OF FIGURES	ii
LIST OF APPENDICES	iii
1.0 INTRODUCTION	. 1
1.1 Summary of Project Activities	3
1.2 Waste Feed Stream Description	6
1.3 Remedial Technology Description	7
1.3.1 Description of the SoilTech ATP	8
1.3.1.1 Overview	8
1.3.1.2 Hazardous Waste Treatment	9
1.3.1.3 Thermal Desorption	10
1.3.1.4 Dehalogenation (Dechlorination)	10
2.0 TREATABILITY STUDY APPROACH	11
2.1 Test Objectives and Rationale	11
2.2 Equipment and Materials	11
2.3 Experimental Design and Procedures	11
2.4 Sampling and Analysis	17
2.5 Data Management	17
2.6 Deviations From the Proposal	18

TABLE OF CONTENTS

(Continued)

		1	PAGE
3.0	RESU	ILTS AND DISCUSSIONS	19
	3.1	Feed Samples	20
	3.2	Coked Solids	22
	3.3	Combusted Solids	26
	3.4	Condensate Samples	27
4.0	ENGIN	NEERING EVALUATION AND CONCLUSIONS	28
	4.1	Engineering Evaluation	28
		4.1.1 Moisture Content	28
		4.1.2 Particle Size	29
		4.1.3 Hydrocarbon Content	29
		4.1.4 Materials Handling Characteristics	30
	4.2	Conclusions	30
ΓAΒL	.ES		
igu	RES		

DD A 30 800 THEATHWY RPT (April 0 1333)

APPENDICES

LIST OF TABLES

TABLE NUMBER	TITLE		
1	Schedule of Chemical Analyses		
2	Analytical Methods		
3	Summary of Analytical Results for HRI No. 46532-2 (Off-site Containment Area)		
4	Summary of Analytical Results for HRI No. 46532-3 (Off-site Containment Area [spiked])		
5	Summary of Analytical Results for HRI No. 46532-4 (On-site Containment Area [spiked])		
6	Minimum Removal Efficiencies for VOCs, SVOCs, and PCBs		
7	Compounds Detected with the Detection Limit Above the Remediation Level		

LIST OF FIGURES

FIGURE NUMBER	DRAWING <u>NUMBER</u>	TITLE
1	92-530-A1	Cross-Section, SoilTech ATP System
2	92-530-B2	Simplified Flow Diagram, SoilTech ATP System
3	Photo	SoilTech ATP System Bench-Scale Test Unit

LIST OF APPENDICES

APPENDIX	TITLE	
А	Treatability Study Report by Hazen	
В	ATP Bench-Scale System Description	
С	ATP Bench-Scale Test Procedures	
D	Test Results	
Ε	Cleanup Goals (Adopted from Warzyn RFP)	

BENCH-SCALE TREATABILITY STUDY SOILTECH ANAEROBIC THERMAL PROCESS AMERICAN CHEMICAL SERVICES NPL SITE GRIFFITH, INDIANA

1.0 INTRODUCTION

Canonie Environmental Services Corp. (Canonie) and SoilTech ATP Systems, Inc. (SoilTech) conducted bench-scale tests to determine the effectiveness of a low temperature thermal desorption process, the SoilTech Anaerobic Thermal Process (ATP) System, for removing contaminants from soil and waste samples from the American Chemical Services (ACS) National Priority List (NPL) site in Griffith, Indiana. Soils and wastes at the ACS site contain volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and polychlorinated biphenyls (PCBs). The overall objectives of the tests were to determine the effectiveness of the ATP system in removing the contaminants from the source material and to assess the viability of the full-scale ATP System in treating the soils and wastes at the ACS site.

Tests were conducted on the samples according to normal procedures and no significant variations or changes were necessary. The standard retort test temperatures of 1000°F and 1100°F were used and the duration of each retort test was the same as SoilTech's standard, approximately 30 minutes.

The test data indicated that the ATP System is well suited for treating material from the ACS site. Specifically, the tests provided the following information:

1. PCBs were reduced to nondetectable levels [with a detection limit of 1000 micrograms per kilogram (µg/kg) or parts per billion (ppb)] in the three treated samples, half the remediation level specified in the Request for Proposal (RFP). Total recoverable petroleum hydrocarbons (TRPH) were also

reduced to nondetectable levels. (SoilTech has demonstrated at commercial scale that the target PCB concentration of 2000 ppb or less can be achieved.)

- 2. Concentrations of VOCs and SVOCs were reduced to non-detect levels or, if detected, to levels below the remediation levels/cleanup goals. The exceptions to this are further explained in Section 3.2. These exceptions are where analysis indicated the compound was not present but the detection limit was above the remediation level.
- 3. The total organic carbon (TOC) present in the feed material was significantly reduced by the ATP System. However, some TOC was present in the treated soil indicating the presence of carbonaceous material which was not combustible at temperatures of up to 1200 degrees Fahrenheit (°F). A more extensive discussion of TOC analysis is provided at the end of Section 3.2.
- 4. Liquid products of the ATP System are treatable by conventional treatment methods. The aqueous liquid product (water) generated by the treatment process can be treated in an on-site or off-site water treatment system. If treated on-site, the treated water can be used to cool and reduce dusting of the combusted material which exits the ATP System. The organic liquid product (oil) generated by the treatment process can be sent off-site for disposal.

Described below are a summary of project activities, a description of the waste stream, and a description of the ATP Technology.

1.1 Summary of Project Activities

Canonie was contracted by Warzyn, Inc. (Warzyn) to conduct a bench-scale treatability study on three representative samples from the ACS site using the low temperature thermal desorption system - ATP. Canonie and SoilTech (a Canonie affiliate which provides full-scale ATP services within the United States) completed the treatability study in accordance with their proposal, the contract, and correspondence received from Warzyn.

SoilTech maintains laboratory space at the facility of Hazen Research, Inc. (Hazen) in Golden, Colorado, for the operation of the ATP bench-scale unit. All bench-scale ATP tests and operations are conducted by Hazen personnel under SoilTech's direction. For the ACS treatability study, all the bench-scale tests were conducted at the Hazen facility using a bench-scale ATP System and Hazen personnel.

Three initial source samples from the ACS site were collected and sent to Hazen by Warzyn. Hazen identification numbers (HRI No.) were assigned to each sample and are cross-referenced below with Warzyn's designation numbers.

Warzyn Designation	HRI No.	Sample Location
ACS-COTREAT 02-02	46532-1	Treatment Lagoon Area
ACS-COOFF 02-01	46532-2	Off-Site Containment Area
ACS-COOFF 03-01	46532-3	Off-Site Containment Area (spiked)

A representative subsample of each source sample was collected by Hazen and analyzed for PCBs and SVOCs on an expedited turnaround. Analyses were conducted by Vista Laboratories, Inc. (Vista) of Colorado. Analytical results indicated that the

PCB concentration for each of the source samples was below 100 parts per million (ppm) or milligrams per kilogram (mg/kg). After reviewing the results, Warzyn concluded that the samples may not meet their requirements and therefore, additional field sampling was warranted.

Warzyn conducted a second round of field sampling and sent two additional source samples to Hazen. Hazen's identification numbers (HRI No.) are cross-referenced with Warzyn's designation as shown below.

Warzyn Designation	HRI No.	Sample Location
ACS-TP02A-01	46532-4	On-site Containment Area (spiked)
ACS-TP02A-02	46532-5	On-site Containment Area

After reviewing the analytical results, these samples were not considered to be representative of the weighted average VOC and SVOC concentrations in the waste matrix based on the remedial investigation (RI) data.

Warzyn then decided that Sample HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area) could be used as a feed sample, and Samples HRI 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)] and HRI 46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] would be suitable for the treatability study only if the concentrations of PCBs and SVOCs in these samples could be augmented with spiking solutions. Warzyn prepared the spiking solutions and sent them to Hazen along with mixing instructions. The spiking solution concentrations and resulting spiked soil concentrations, as anticipated by Warzyn, are tabulated below.

Set 1 for Sample HRI 46532-3 ACS-COOFF 03-01, Off-Site Containment Area, spiked				
Concentration per Anticipated Spiked Compound Aliquot (mg/kg) Soil Concentration (mg/kg)				
Aroclor 1248	600	200		
1,1,1-Trichloroethane	15,000	5,000		
Benzene	6,000	2,000		
Isophorone	3,000	1,000		
bis(2-ethylhexyl)phthalate 2,100 700				

Set 2 for Sample HRI 46532-4 ACS-TP02A-01, On-site Containment Area, spiked			
Compound	Concentration per Aliquot (mg/kg)	Anticipated Spiked Soil Concentration (mg/kg)	
1,1,1-Trichloroethane	45,000	15,000	
Tetrachloroethane	9,000	3,000	
Methyl ethyl ketone	9,000	3,000	
Trichloroethene	3,000	1,000	
bis(2-ethylhexyl)phthalate	2,100	700	
bis(2-chloroethyl)ether	225	75	
Chrysene	90	30	
Aroclor 1248	1,500	500	

Hazen spiked Samples HRI 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)] and HRI 46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] with spike solutions Set 1 and Set 2, respectively. Thus, one unspiked sample [HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area)] and two spiked

samples (HRI 46532-3 [ACS-COOFF 03-01, Off-site Containment Area) and 46532-4 (ACS-TP02A-01, On-site Containment Area) were prepared and tested during the treatability study.

All the treatability test runs were conducted between January 13 and January 29, 1993. Untreated samples of the spiked feed material were collected and sent to Warzyn for analyses. Samples of unspiked feed material, all the treated material and other residual streams generated during the study were collected and analyzed through Hazen and other laboratories. Details on the test procedures and on sampling and analyses are presented in Section 2.0.

A treatability study report prepared by Hazen is presented in Appendix A.

1.2 Waste Feed Stream Description

A brief description of the source materials subjected to testing is provided below. A detailed description can be found in Appendix A.

The following observations were made by Hazen regarding the color, matrix, and other characteristics of the source material:

HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area): This was a
brown-grey granular mud material with approximately one-half inch of brown
water standing on top. Several brown and white pebbles were also observed.
The sample was easily mixed by hand and resembled thick, wet concrete. The
moisture content for the sample was determined to be 21.7 percent (wet basis)

and the ash was 71.3 percent. Loss on ignition for the ash material was 1.42 percent.

- HRI 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)]: This was a moist dark brown to black soil. The material contained some rocks up to one-half inch in diameter, humus, and a few tan clay chunks that broke apart easily. The moisture content for the sample was determined to be 18.6 percent, and the ash was 75.3 percent. Loss on ignition for the ash material was 2.15 percent.
- HRI 46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)]: This was a tan sludge material with dark brown crystals up to 2 inches in diameter, some sand or dirt, and some black streaks of an oil-like substance. The crystals broke up into small flakes with agitation. The moisture content for the sample was determined to be 29.2 percent, and the ash was 47.5 percent. Loss on ignition for the ash material was 0.87 percent.

Particle-size data for the source (feed) samples are presented in Tables 1 through 4 of Appendix A. A graphical depiction of the particle-size data is presented on Figures 1 through 3 of Appendix A.

1.3 Remedial Technology Description

The ATP Technology was originally conceived as a means of performing primary refining of tar sands and oil shales to crude oil in the early 1970s. UMATAC Industrial Processes (UMATAC) of Canada developed and tested the technology over a period of more than 15 years with funding from the Alberta Oil Sands Technology Research

Authority (AOSTRA). In 1988, Canonie entered into an exclusive licensing agreement to utilize the technology for waste treatment in the United States. Together, Canonie and UMATAC formed SoilTech and are equal partners in its ownership. This section describes the full-scale desorption process, ATP, whose operations are simulated by the bench-scale ATP equipment.

1.3.1 Description of the SoilTech ATP System

1.3.1.1 Overview

The central element of the SoilTech ATP System is the processor which resembles a rotary kiln on its exterior. However, inside the processor are three physically distinct zones and four zones of distinctly different physical processes. The four physical process zones are as follows:

- 1. Preheat zone
- 2. Reaction zone
- 3. Combustion zone
- 4. Cooling zone

Figure 1 shows a schematic cross section of the processor and depicts each of the four zones.

Low-temperature volatiles such as water and light organics are distilled in the preheat zone at temperatures of about 600°F. Oils and other heavy volatiles are distilled in the retort zone at temperatures typically in the range of 900°F to 1,150°F under anaerobic (oxygen-depleted) conditions. The anaerobic condition in the retort zone

Y______

is maintained by sand seals which allow the passage of solids and inhibit the flow of gases. The seals are located between the preheat zone and the retort zone and between the retort zone and the combustion zone. The vaporized water and organic products are removed from the processor, then condensed and separated in the vapor train equipment.

In the retort zone, some thermal cracking and coking of organic materials usually occurs, creating lighter organic gases and a coke deposit on the mineral solids. The coke is then oxidized in the combustion zone at 1,300°F to 1,400°F and thus provides part of the process's heat requirements. Part of the hot sand in the combustion zone continuously recycles back to the retort zone to provide the primary heat source for the roughly 600°F feed entering from the retort zone. The remaining sand leaving the combustion zone is cooled for discharge, heating the incoming solids or sludge in the preheat zone by thermal conduction through the annular wall. A simplified flow diagram of the entire process is illustrated on Figure 2.

1.3.1.2 Hazardous Waste Treatment

When treating hazardous wastes and sludges, the SoilTech ATP System separates the hazardous components from the inert fraction of the waste. VOCs, SVOCs, hydrocarbons in general, and significantly high-boiling-point organics (such as polynuclear aromatics (PAHs)] and heavy, halogenated hydrocarbons (such as PCBs) are removed from the solids in the preheat and retort zones. Consequently, the coked solids can be oxidized in the combustion zone without creating air emissions problems. Cleaned solids can often be backfilled or otherwise disposed of as nonhazardous waste. SoilTech's experience at two superfund sites attests to this.

1.3.1.3 Thermal Desorption

Test work and commercial Superfund remediation work conducted on PCB-contaminated sands and sludges demonstrated that solids are efficiently cleaned to very low residual levels. The PCBs removed from wastes are recovered in the condensed oil product. In a commercial project, the oil concentrate can then be managed. As an example, the oil can be shipped off-site for disposal or incineration. This was the procedure used at the Waukegan Harbor Superfund Site. This lower temperature thermal treatment gives significant advantages in process reliability and overall economics compared to wholesale incineration of oily sludges and soils.

1.3.1.4 Dehalogenation (Dechlorination)

In some cases, halogenated organic compounds such as PCBs can be totally destroyed on-site by integrating dechlorination with the ATP System. The SoilTech ATP Unit provides the heat, retention time, and mixing characteristics required to make dechlorination reactions work. The commercial cleanup performed at the Wide Beach Superfund Project indicated that over 85 percent of the PCBs entering the unit were destroyed by dechlorination in their first pass. The remaining 15 percent of the PCBs were thermally desorbed from the soil, condensed, mixed with dechlorination chemicals, then recycled to the feed end of the unit. This "recycle to extinction" technique resulted in total on-site destruction of PCBs at the Wide Beach site.

Collectively, the balance of this report provides detailed descriptions of the source/feed material, the bench-scale and full-scale equipment, the treatability test procedures and observations, the analytical test results, and the evaluation of scale-up to full-scale operations.

2.0 TREATABILITY STUDY APPROACH

2.1 Test Objectives and Rationale

The main focus of this bench-scale treatability study was to determine the ATP System's effectiveness in treating the subject materials from the ACS site. The specific objectives of this study, as defined in Canonie's proposal, were to:

- Determine the effectiveness of the ATP System in removing VOCs, SVOCs, and
 PCBs from contaminated soils and wastes to remediation levels;
- 2. Determine TOC content of untreated and treated soils and wastes;
- 3. Define operational constraints and/or limitations with respect to the materials tested at this site.

2.2 Equipment and Materials

As indicated earlier, SoilTech maintains laboratory space at Hazen in Golden, Colorado for the operation of the bench-scale ATP Unit. A complete description of the equipment and materials used for bench-scale testing is included in Appendix B.

2.3 Experimental Design and Procedures

SoilTech's testing apparatus which is described in Appendix B is shown on Figure 3.

The testing sequence outlined in Canonie's proposal was followed during this treatability study and is presented in Appendix C.

Treatability testing is conducted in three test steps. Each step simulates part of the full scale ATP System and its operation, subjecting the feed sample to conditions similar to conditions in each of the process zones of the ATP System.

Ramp Test

To expose the sample to conditions as they exist in the preheat zone, the sample is first used to conduct a ramp test or variable temperature test. During this test the sample is gradually heated from ambient temperature to approximately 1,200°F. This provides some familiarity with the material to the operators and gives an indication of the temperature at which to expect contaminants and water to desorb from the sample matrix.

This test also provides some measure of safety allowing the operators to see if a violent reaction occurs at any temperature so they can plan subsequent steps to avoid any potential hazard during subsequent, quicker, and more violent retort tests. Typically no analytical samples are taken during this test as the temperatures are not indicative of full-scale operations and the products may not be representative of full scale operations.

During this test, condensate production is monitored as the formation of condensates during this test is relatively slow. To facilitate this, a graduated glass cylinder is used to collect the condensates.

The primary purpose of this test is to provide familiarity with the sample and safety to the operators.

Retort Test

After a ramp test is conducted, the sample is subjected to a retort test. This test exposes the sample to anaerobic (oxygen-starved) conditions closely approximating conditions to be experienced by the material as it passes through the anaerobic retort chamber of the full scale system.

The sample is rapidly exposed to elevated temperatures (1,000°F or 1,100°F) by feeding the sample into a preheated reactor containing an equal volume of preheated silica sand. The rapid mixing and simultaneous heating of the sample with the preheated sand simulates the recycle of sand that occurs in the retort chamber of the ATP System.

This test simulates the primary step in full-scale processing where decontamination of the matrix takes place. Samples of material, both solids and condensates, from the retort test are analyzed to determine the effectiveness of this desorption process in removing contaminants from the matrix and to characterize the condensate. Typically, the concentrations of any compounds of concern in the solids are reduced to non-detect levels in this step, signifying complete decontamination of the matrix. This test is repeated twice, once at 1,000°F and once at 1,100°F, to simulate the range of temperatures typically encountered in the full-scale system.

The material discharged from the retort test and the retort zone of the full-scale ATP System achieves 50 percent of its reduction in contaminant concentrations because

of the internal dilution caused by recycling the hot sand. This is an internal operation and the typical net effect of the ATP System is to reduce contaminant levels by more than 99 percent.

The internal recycle, the purpose of which is to provide heat transfer, does not increase the volume of soil to be treated because coarse material in the contaminated soil is typically used as the recycle sand and because it is recycled internally, not only passed through the system.

Combustion Test

Normally the products of both retort tests are combined and fed to the bench-scale system at a preheated temperature of 1,200°F. At the same time, air is circulated through the bench unit allowing the sample to be exposed to atmospheric conditions and oxygen similar to conditions in the combustion chamber of the full-scale system.

The sample, previously sampled to demonstrate complete decontamination, is allowed to combust at this higher temperature. Any coke that may have formed on the other solids present may combust at this point. In the full-scale system, this combustion provides some of the energy needed in the preheat zone. In the full-scale system, natural-gas-fired burners also provide energy to the system at this point to sustain combustion and required temperatures.

The product of the combustion test, previously demonstrated to be free of contaminants, is similar to the final product of the ATP System and can be used to characterize the discharge product for geotechnical properties. No geotechnical tests were conducted during this treatability study.

A - - - - -

Tests Conducted

During the bench-scale testing for the ACS project, Hazen performed one ramp test (variable temperature bench test) and two retort (fixed temperature bench test) tests for each of the three source (feed) samples. One combustion test run was conducted for each of the three source samples. The combustion test used the treated solids available from the two retort test runs conducted for the respective source samples.

A summary of the observations of the three different phases of the test is provided below:

Phase I - Ramp Test

The ramp tests were conducted on each feed material. The test involved heating of the feed from ambient temperature to about 1,235°F for a residence time of up to 2.5 hours. Vapor volume and end-point temperatures of the vapors were continuously monitored to provide information for subsequent fixed-temperature (retort) tests. Products from the ramp test included coked solids and liquid condensate (oil and water).

Phase II - Retort Tests

The retort tests were conducted at low and high fixed temperatures of 1,000°F and 1,100°F. This simulates the range of temperatures present in the retort zone of the full-scale system. A residence time of 30 minutes for each retort test of the three source samples was used to provide adequate time for gases to evolve. This is normal procedure for treatability testing unless gases continue to be evolved. If a

~______

significant quantity of gas is still evolving, the test is continued. This did not occur with these samples. The retort tests were conducted using equal amounts of pretreated silica sand. First the silica sand and the test drum were heated to desired temperatures. Once the desired temperatures were reached, the feed material was added to the drum. This sudden increase of the temperature of the sample and mixing with hot solids allows the lab procedure to simulate the desorption step in the full-scale ATP System's retort zone.

The products collected from these retort tests included coked solids (treated material) and liquid condensate.

Phase III - Combustion Test

For each source sample, one combustion test was conducted on the coked solids available from the two retort runs. The coked solids from the two retort runs were combined and, under aerobic conditions (obtained via air stream introduction in the drum), were heated to about 1,200°F. This procedure produced a representative end product which was subsequently analyzed for TOC and particle size. This procedure for the combustion test simulates the full-scale ATP treatment provided to the coked solids exiting the anaerobic/retort zone.

The only product collected from this test was combusted solids.

During all the tests, a 12-point analog recorder continuously recorded temperatures within the bench-scale unit. These data and other data including sample weights, times at which observations were made, off-gas flow rates, ATP Drum rotation rates and other factors recorded by the operator are presented in Appendix A.

2.4 Sampling and Analysis

The feed material, the treated material, and the discharged streams generated during testing were sampled and analyzed in accordance with Canonie's revised proposal dated December 23, 1992. Table 1 presents the schedule of chemical analyses. In addition to the chemical analyses presented in Table 1, the feed and coked solids were also analyzed for TRPH.

Two feed material samples, namely HRI 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)] and 46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] were analyzed for VOCs, SVOCs, and PCBs by a laboratory contracted by Warzyn. All the other analyses were conducted by SoilTech through Hazen, Vista, and other laboratories. Table 2 presents the analytical methods used by SoilTech's laboratories. Appendix D presents the analytical raw data obtained from the laboratories.

Tables 3, 4, and 5 summarize the results of chemical analyses.

2.5 Data Management

Through the subcontractor laboratory, Contract Laboratory Program-type quality assurance/quality control (QA/QC) for the VOC, SVOC, and PCB analyses was provided. The QA/QC information is presented along with the raw data in Appendix D. All the other analyses were conducted in accordance with the QA/QC required by the methods cited in Table 2, the standard operating procedures, or as developed in-house through extensive bench-scale testing experience. Observations

and data were well documented through the use of logbooks and data collection sheets.

2.6 Deviations From the Proposal

One major deviation from the proposal and standard procedure was instituted during the treatability study. A solution containing some chemical contaminants was added to two of the feed samples to augment the concentration of these contaminants.

3.0 RESULTS AND DISCUSSIONS

Analytical results came primarily from two laboratories. Warzyn contracted with Environmental Monitoring and Technologies, Inc. for analysis of feed samples 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)], and 46532-4 [ACS-TPO2A-01, On-site Containment Area (spiked)]. They analyzed using methods performed according to SW-846 "Test Methods for Evaluating Solid Waste." They reported using the CERCLA Target Compound List for CERCLA Sites.

SoilTech contracted with Vista Laboratories to analyze the remainder of the samples including the third feed sample 46532-2 (ACS-COOFF 02-01, Off-site Containment Area) for SVOCs and VOCs as well as the majority of other required analyses. Vista analyzed according to SW846 methods 8240 and 8270 and reported VOCs and SVOCs using the lists in these methods.

The two lists are not identical and therefore the two lists are not directly comparable. Some compounds are not on both lists and analytical results are not available. For the majority of compounds results from the two labs are comparable. Where data is not available "NA" appears in the tables to signify that this particular compound was not analyzed for, and no detection limit is specified. For this report the 8240 and 8270 formats, applicable to the majority of the analyses, have been used.

The analytical results for TRPH, oil and grease, VOCs, SVOCs, PCBs, and carbon contents are summarized in Tables 3 through 5. The results for grain-size analysis, loss on ignition, and moisture content are discussed in Hazen's report presented in Appendix A. In this section, the above-mentioned results are discussed in detail.

3.1 Feed Samples

The moisture content of the unspiked Sample HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area) was determined to be 21.7 percent. This sample was a granular mud material with free liquid standing on top of the sample. The sample resembled thick wet concrete with several brown and white pebbles. Spiked Sample HRI 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)] was determined to have a moisture content of 18.6 percent. This sample was a dark brown to black soil with some rocks up to 2 inches in diameter.

Sample 46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] was a spiked, thin, tan sludge with dark brown crystals up to two inches in diameter and some black oil streaks. The crystal broke into small flakes when the sample was homogenized. The moisture content was determined to be 29.2 percent.

Loss on ignition of the ash material for the Samples HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area), 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)] and 46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] were 1.42 percent, 2.15 percent, and 0.87 percent, respectively. These results provide a measure of the combustible material present in the feed soils.

The grain-size analysis results show that about 16 percent of the feed Samples HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area) and 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)] passes through 200 mesh, while 26 percent of the feed Sample HRI 46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] passes through 200 mesh. These results indicate the samples to be silty to clayey sands.

All the feed samples contained TRPH and oil and grease at high concentrations. The TRPH concentrations were found to be in the range of 7,700 ppm to 12,000 ppm, while oil and grease concentrations were determined to be in the range of 4,700 to 400,000 ppm (40 percent). These analyses indicate presence of light and heavy hydrocarbons at significant levels.

Those VOCs which were detected above 1,000 ppm in any sample include acetone (110 ppm to 86,600 ppm), methylene chloride (less than 25 ppm to 1,500 ppm), 1,2-dichloroethane (less than 60 ppm to 3,200 ppm), 2-butanone (91 ppm to 6,000 ppm), 1,1,1-trichloroethane (1,110 ppm to 19,700 ppm), trichloroethene (134 ppm to 3,700 ppm), tetrachloroethene (874 to 3,900 ppm), benzene (less than 41 ppm to 5,110 ppm), toluene (353 ppm to 2,200 ppm), and total xylenes (830 ppm to 3,700 ppm). The concentrations of the VOCs detected in the spiked samples were much lower than those anticipated. This discrepancy may be attributable to the complex characteristics of the feed material (i.e., the presence of both polar and non-polar compounds), to preferential partitioning of the contaminants within the complex waste material.

All the samples contained Aroclor 1248. The detected concentrations ranged from less than 6.5 ppm to 150 ppm. The unspiked Sample HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area) contained Aroclor 1254 at a concentration of 77 ppm. As observed during the VOC analyses, the concentrations of Aroclor 1248 detected in spiked samples were lower than those anticipated. This discrepancy again may be explained by the rationale presented for analysis of VOC results.

The SVOCs detected at or above a concentration of 100 ppm included phenol (less than 2 ppm to 150 ppm; isophorone (less than 0.3 ppm to 225 ppm); naphthalene (13 ppm to 100 ppm); and bis(2-ethylhexyl)phthalate (less than 17.5 ppm to 210 ppm). Similar to the VOC and PCB results, the concentrations of the selected SVOC compounds in the spiked samples were less than anticipated.

The feed Samples HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area), HRI46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)], and HRI46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] were also analyzed for TOC. The TOC concentrations were detected to be 8.45, 4.01 and 50.53 percent, respectively. The concentrations of the organic carbon and carbonate carbon for each sample are shown in Tables 3, 4 and 5.

3.2 Coked Solids

All the samples of coked solids generated by both retort runs (1,000°F and 1,100°F) were analyzed for TRPH. The results indicated that TRPH was not present in any of the samples above the detection limits. The coked solids were not analyzed for oil and grease.

The analytical results indicate that VOC and SVOC clean-up goals defined in the RFP and presented in Appendix E were met during all the test runs, or the residual concentrations were below detection limits. Table 6 presents the calculated minimum removal efficiencies.

The analytical results for Sample HRI 46532-2 (ACS-COOFF 02-01, Off-site Containment Area) indicated that all contaminants were removed to below the

remediation levels. For Samples HRI 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)] and HRI46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] the analyses indicated that PCBs and all the VOCs and SVOCs were removed below their remediation limits, with the exceptions noted in Table 7. These exceptions are exceptions because the remediation level stated in the RFP is lower than the detection limit.

Canonie believes that the VOCs indicated to be present at levels below the remediation level but above the detection limit in feed materials were removed from the feed material once the feed material was heated to 1,000°F. The presence of VOCs in the retort samples is believed to reflect contamination subsequent to the retort test. The hot coked material may have adsorbed or absorbed moisture (and associated volatile contaminants) from the ambient air. At the Hazen facility, the hot coked solids are covered and put under a ventilated hood for cooling. As the spiking solution contained VOCs at high concentrations, a potential existed that the air in the same room may also contain these VOCs. When the hot coked solids were transferred to a pan and put under the hood, they may have absorbed the moisture and some VOCs from the air due to their hygroscopic nature. This suspicion of laboratory VOC contamination is supported by the absence of heavier compounds with higher boiling points in the retort samples.

Based on a knowledge of the ATP System and full-scale operational experience, Canonie and SoilTech strongly believe that no VOCs will be present in the coked solids produced by the full-scale ATP System.

When compared with the VOC remediation levels (clean-up goals) presented in Appendix E (adopted from Warzyn's RFP), the results indicate that all the coked solids met or exceeded the clean-up goals except as noted in Table 7.

Minimum removal efficiencies of 95 percent to greater than 99 percent were achieved for the VOCs. To obtain a conservative estimate, the concentrations in the two representative coked solids were compared, and the one which was the highest was used in the calculations. For those compounds which were detected in the feed sample, but not in any of the coked solids, the detection limit concentration was used during the calculation of the minimum removal efficiency.

All the SVOCs were removed from the feed material to non-detect levels or to levels below the cleanup goals presented in Appendix E, except as previously noted. The minimum removal efficiencies calculated for the SVOCs are presented in Table 6. These removal efficiencies calculated on the same basis as for VOCs. Removal efficiencies for the SVOCs were between 77 percent and 99 percent. Low removal efficiencies are attributable to the low feed sample concentrations and high detection limits for the coked solids.

The PCB clean-up goals presented in the Appendix E were met during all the test runs. No PCBs were detected in the coked solids, indicating complete desorption. The minimum removal efficiencies were calculated for Aroclor 1248 and ranged from 98 percent to 99 percent.

TOC is determined in the feed and retort solids to quantify the coke formed during desorption of the contaminants in the retort chamber. This allows SoilTech to

evaluate the use of the distilled compounds as fuel for the system and to estimate how much energy will be available from the waste during the combustion process.

By examining the initial and resultant TOC content of the material, SoilTech can estimate the amount of potential fuel savings that may be achievable with the specific waste to be treated.

SoilTech has not historically used this analysis as an indicator of the efficiency of the desorption step. The detection limit of .05% and the relative accuracy of the analysis (\pm 5%) is no better than specific analyses conducted to determine the initial and resultant content of specific compounds in the waste e.g., examination of VOCs, SVOCs, and PCBs.

TOC concentrations are a poor indicator of contaminant removal as they fail to provide specific information about the compounds of concern, those organic compounds that render the material a waste. For this determination, specific analyses for the compound of concern is required.

TOC data for retort solids give an indication of the quantity of nonvolatile organics that remain after exposure to retort temperatures, typically 1,000°F and 1,100°F. TOC concentration information for the combusted solids provides information about organic material that has not combusted in the presence of air at temperatures of approximately 1,200°F.

TOC was reduced from 8.45 percent in the feed Sample 46532-2 (ACS-COOFF 02-01, Off-site Containment Area) to 0.55 percent and 0.86 percent in the high and low retort tests, respectively. This was further reduced to 0.07 percent in the

combusted solids. This indicates little carbon remains after processing in the retort chamber and therefore, combustion will contribute only a small fraction of the energy required to operate the ATP System (i.e., the system will require an external fuel source and the waste itself will not contribute significantly to the energy requirements).

Similar results were obtained for Sample 46532-3 [ACS-COOFF 03-01, Off-site Containment Area (spiked)] with TOC being reduced from 4.01 percent in the feed to 0.46 and 0.73 percent in the retort solids, most of which was burned in the combustion process. This contaminated soil cannot be expected to contribute significantly to the energy requirements of the system.

With Sample 46532-4 [ACS-TP02A-01, On-site Containment Area (spiked)] there was a substantial quantity of organic carbon available in the feed material (50.53 percent). However, the majority of this potential energy source was removed from the system along with the contaminants prior to the combustion zone where the energy value could be utilized. This indicates that, as with the other two samples, no significant quantity of energy will be derived from the feed to the system.

3.3 Combusted Solids

The total carbon content of the combusted solids for all three samples was less than 0.28 percent, in the range of 0.05 percent to 0.28 percent. The organic carbon contents were detected in the range from 0.05 percent to 0.07 percent, while concentrations of carbonate carbon were detected to be in the range of less than 0.02 percent to 0.21 percent.

There is not a significant quantity of carbon to help sustain the energy requirements of the system nor is it sufficient to produce an emissions problem.

3.4 Condensate Samples

As expected, contaminants desorbed from the feed were concentrated in the condensate streams. PCBs, VOCs, and SVOCs were detected in both the water and oil phases collected as condensate streams. The full-scale ATP System is designed to separate the oil and water. The oil, which will contain the majority of the contaminants, can be sent off-site for disposal. The water can be either treated on-site or sent off-site for disposal or treatment.

4.0 ENGINEERING EVALUATION AND CONCLUSIONS

4.1 Engineering Evaluation

This section discusses the bench-scale data relative to full-scale ATP System operation. Material characteristics meriting special consideration or affecting optimum full-scale treatment are addressed in this section. Primary feed characteristics affecting full-scale treatment include:

- 1. Moisture content
- 2. Particle size
- 3. Hydrocarbon content
- 4. Material handling characteristics

These characteristics affect full-scale ATP System operation directly and/or affect the materials handling and safety requirements of the operation. Each of these four primary feed characteristics is discussed below, followed by a discussion of full-scale treated material character.

4.1.1 Moisture Content

Feed moisture content is a rate-limiting parameter affecting plant throughput and therefore the unit price of treatment. The ideal moisture content in the feed material for the full-scale ATP System is in the range of 5 to 10 percent. At much lower moisture contents, entrained dust can create problems in the vapor condensing systems. The dust can cause difficulties in maintaining correct pressure profiles in the internal zones of the condensing equipment. At moisture contents above 10 percent,

the latent heat required to distill the moisture from the feed in the preheat zone of the ATP System becomes a limiting factor, resulting in reduced feed capacity.

The feed samples from the ACS site contained up to 29.2 percent moisture, but some samples were measured at less than 20 percent moisture. Blending of lower moisture content soils with the higher moisture content soils will provide a consistent and lower moisture content feed to the ATP System and therefore will result in lower cost of operation and greater throughput. Reducing the feed rate may be required during full-scale operations if blending is not used.

4.1.2 Particle Size

The ACS soils material contains enough coarse material, as indicated in the testing, to be processed without routine co-feeding of a coarse additive. Any material larger than 2 inches would be screened out before feeding to the SoilTech ATP System.

4.1.3 Hydrocarbon Content

The feed samples contained up to 12,000 mg/kg of TRPH, and up to 40 percent of oil and grease. It may not be necessary to add a carrier oil to the raw feed for the condensing and pumping equipment to operate properly. The full-scale ATP System is routinely capable of treating materials containing up to 10 percent hydrocarbons, and therefore, soil blending and/or slower processing rates will be required during full-scale operations to reduce the feed hydrocarbon concentrations.

The low concentrations of PCBs and very high light-hydrocarbon loading on the ACS soil do not make it a potential candidate for on-site soil dechlorination.

The low quantity of humic material in the feed material combined with the very small concentration of heavy hydrocarbons present demonstrates that very little coke is likely to form on the particles in the retort zone. This is verified by the low TOC results on the coked solids. This is well within the combustion zone's capacity to burn coke completely and efficiently. The coke will provide only a small portion of the fuel requirements of the ATP System. The hydrocarbon content of this material will therefore have no impact upon processing rates in the full-scale ATP System.

4.1.4 Materials Handling Characteristics

No difficulties concerning materials handling of the ACS soils are anticipated. Material greater than 2 inches in diameter would be screened out and, if necessary, crushed and processed.

Treated soils are expected to be quite dusty. However, the soil conditioner at the discharge end of the ATP System is designed to effectively cool and moisten the final product to ensure that fugitive dust emissions are eliminated.

4.2 Conclusions

Based on the results, discussions, and engineering evaluation, Canonie and SoilTech believe that the soils and wastes represented by the treatability study samples can be effectively treated by the full-scale ATP System.

The test data indicate that the SoilTech ATP System is well suited for treating material from the ACS site. Specifically, the tests provided the following information:

- 1. PCBs were reduced to nondetectable levels (1000 μ g/kg) in the three treated samples, half the remediation level specified in the RFP. TRPH were also reduced to nondetectable levels. (SoilTech has demonstrated at commercial-scale that the target PCB concentrations of 2000 μ g/kg or less can be achieved.)
- Concentrations of VOCs and SVOCs were reduced to non-detect levels or, if
 detected, to levels below the remediation levels/cleanup goals. The exceptions
 to this are noted in Table 7. These exceptions are where analysis indicated the
 compound was not present but the detection limit was above the remediation
 level.
- 3. The TOC present in the feed material was significantly reduced by the ATP System. However, some TOC was present in the treated soil, indicating the presence of carbonaceous material which was not combustible at temperatures of up to 1200°F. A more extensive discussion of TOC analysis is provided at the end of Section 3.2.
- 4. Liquid products of the ATP System are treatable by conventional treatment methods. The aqueous liquid product (water) generated by the treatment process can be treated in an on-site or off-site water treatment system. If treated on-site, the treated water can be used to cool and reduce dusting of the combusted material which exits the ATP System. The organic liquid product (oil) generated by the treatment process can be sent off-site for disposal.

Based on past experience with both bench-scale tests and full-scale operations, SoilTech believes bench testing is indicative of SoilTech's ability to achieve similar results at full scale to those indicated during the bench tests.

.

TABLE 1
SCHEDULE OF CHEMICAL ANALYSES

	<u>Sand</u>	<u>Feed</u>	Coked <u>Solids</u>	Combusted <u>Solids</u>	Condensed <u>Oil</u>	Condensed <u>Water</u>
Number of Samples	1	3	6	3	3	3 ,
Moisture	1	3				
Oil and Grease		3				
TOC		3	6	3		~~
РСВ		3	6		3	3
VOC		3	6		3	3
SVOC		3	6	~~	3	3
Particle Size Distribution	1	3		3		
Simulated Distillation	a. =	3		~-	3	·
Dean Stark Extraction		3				
Loss on Ignition		3	6			

TABLE 2

ANALYTICAL METHODS

Solids

Moisture (Feed Soil) Gravimetric Method at 105°C for 16 hours

TOC SW846/Method 9060

pH EPA/SW846/Method 9045

VOCs EPA/SW846/Method 8240

SVOCs EPA/SW846/Method 8270

PCB EPA/SW846/8080

Dean Stark Extraction Proprietary Method - Similar to API 40

Simulated Distillation ASTM D2887

Grain-Size Distribution ASTM 422 (Sieve Analysis Only, Excludes Hydrometer Testing)

Loss on Ignition Proprietary Gravimetric Method

Condensed Oil and Water

PCB (Low Concentration) EPA/SW846/8080

PCB (High Concentration) Vista Lab SOP No. 325.5, Hexane extraction followed by GC/FID analysis

Simulated Distillation ASTM D2887

VOCs EPA/SW846/Method 8240

SVOCs EPA/SW846/Method 8270

TABLE 3
SUMMARY OF ANALYTICAL RESULTS
FOR HRI NO. 46532-2 (Off-site Containment Area)

Hazen Sample No. 4653	ł .	18.2-2-S2H	18.3-2-\$2L	18.23-2-L1(W)	18.23-2-L1(0)	
Warzyn Sample No					, U. 23-2-L 1 (U)	D 43 -
Vista Sample No		935754-002	935754-003	935754-004U	935754-004L	Remediation
Sample Description		High Retort	Low Retort	Water	935754-004L	Level
	Feed	Coked Solids	Coked Solids	Condensate	Condensate	(RFQ
Unit	<u> </u>	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Table 1)
TRPH	1.2E7	ND (40,000)	ND(40,000)	NA NA	NA NA	ug/Kg
Oil and Grease	1.2E7	NA	NA	NA NA	NA NA	
VOCs					- IVA	
Chloromethane	ND (200,000)	14	11	ND (1.000.000)	ND (1,000,000)	
Methylene Chloride	1,500,000	190	290	16,000,000		
Acetone	110,000 J	4,400	190	910,000 J	810,000	6,200
Carbon Disulfide	ND (100,000)	12	18	ND (500,000)	1,300,000 J	2,400,000
1,1 Dichloroethene	30,000 J	ND (5)	6.4	710,000	ND (500,000)	_
1,1 Dichloroethane	100,000	8.1	ND (5)	1,400,000	290,000	98
1,2 Dichloroethenes, Total	ND (100,000)	ND (5)	3.5 J	140,000 J	120,000 J	
Chloroform	43,000 J	3.4 J	3.6 J	ND (500,000)	120,000 J	250,000
1,2 Dichloroethane	3,200,000	47	8.4		150,000 J	9,500
2-Butanone (MEK)	560,000 J	3.2 J	ND (100)	67,000,000	1,700,000	640
1,1,1-Trichloroethane	1,300,000	130	44	3,600,000 J	3,300,000 J	620,000
Bromodichloromethane	ND (100,000)	ND (5)	ND (5)	8,000,000	10,000,000	2,300,000
1,2-Dichloropropane	27,000 J	ND (5)	ND (5)	ND (5)	160,000 J	
Trans-1,3-Dichloropropene	25,000 J	7.5	ND (5)	ND (500,000)	190,000 J	420
Trichloroethene	3,700,000	36	30	ND (500,000)	180,000 J	
Dibromochloromethane	28,000 J	ND (5)	ND (5)	95,000,000	1,200,000	5,300
1,1,2-Trichloroethane	ND (100,000)	ND (5)	ND (5)	ND (500,000)	160,000 J	
Benzene	490,000	23	23	ND (500,000)	220,000 J	510
Cis-1,3-Dichloropropene	22,000 J	ND (5)	ND (5)	10,000,000	640,000	1,000
2-Chloroethylvinylether	ND (200,000)	ND (10)	ND (10)	ND (500,000)	170,000 J	
Bromoform	28,000 J	ND (5)	ND (5)	ND (1,000,000)		•
4-Methyl-2-Pentanone (MIK)	ND (1,000,000)	ND (50)	ND (50)	ND (500,000)	130,000 J	
Tetrachloroethene	1,400,000	37	48	11,000,000	1,000,000 J	630,000
1,1,2,2-Tetrachloroethane	ND (100,000)	ND (5)	ND (5)	26,000,000	670,000	1,100
Toluene	2,200,000	36	34	ND (500,000)	360,000 J	280
Chlorobenzene	67,000 J	30	26	54,000,000	1,300,000	5,000,000
Ethylbenzene	870,000	24	26 27	ND (500,000)	ND (500,000)	150,000
Styrene	420,000	9	14	18,000,000	720,000	1,300,000
Xylenes Total	3,700,000	18	ND (5)	11,000,000	550,000	1,700
			140 (3)	87,000,000	1,900,000	2.6E7

10 YM 212 5 to 1 to 0 (V1 X1 5 (4 1 7 0))

TABLE 3 (Continued) SUMMARY OF ANALYTICAL RESULTS

FOR HRI NO. 46532-2 (Off-site Containment Area)

Hazen Sample No. 46532	18.1-2-S1	18.2-2-S2H				
Warzyn Sample No.	ACS-COOFF-02-01	10.2-2-3211	18.3-2-S2L	18.23-2-L1(W)	18.23-2-L1(O)	
Vista Sample No.	935754-001	935754-002	935754-003	935754-004U	935754-004L	Remediation Level
Sample Description Units	Feed ug/Kg	High Retort Coked Solids ug/Kg	Low Retort Coked Solids ug/Kg	Water Condensate ug/Kg	Oil Condensate ug/Kg	(RFQ Table 1) ug/Kg
PCBs Aroclor 1248 Aroclor 1254 SVOCs	ND (6,500) 77,000	ND (1,000) ND (1,000)	ND (1,000) ND (1,000)	3,700,000 1,200,000	ND (1,000) ND (1,000)	2,000 2,000
Phenol Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol 4-Methylphenol Isophorone 2,4-dimethylphenol Benzoic Acid Naphthalene 4-Chloroanilene Hexachlorobutadiene 2-Methylnaphthaline Hexachlorocyclopentadiene Dimethyl Phthalate Acenaphthene Dibenzofuran Diethyl Phthalate Fluo ene	150,000 ND (66,000) ND (33,000) 10,000 J 21,000 J 150,000 10,000 J ND (170,000) 100,000 ND (66,000) 17,000 J 64,000 ND (33,000) 12,000 J ND (33,000) ND (33,000) ND (33,000) ND (33,000)	ND (330) ND (660) ND (330) ND (660) ND (330)	ND (330) ND (660) ND (330)	7,800,000 ND (200,000) 200,000 1,400,000 1,000,000 3,300,000 1,100,000 4,000,000 1,600,000 1,300,000 1,800,000 1,400,000 1,400,000 1,400,000 1,400,000 1,000	1,300,000 68,000 J ND (100,000) 36,000 J 33,000 J 27,000 J ND (100,000) ND (100,000) ND (200,000) ND (100,000) ND (100,000) ND (100,000) ND (100,000) ND (100,000) ND (100,000) ND (100,000) ND (100,000)	7,200 82,000 360
Hexachlorobenzene Phenanthrene Anthracene	ND (33,000) 3,300 J ND (33,000)	ND (330) ND (330) ND (330)	ND (330) ND (330) ND (330)	67,000 J 150,000 52,000 J	ND (100,000) ND (100,000) tiD (100,000)	18

TABLE 3 (Continued) SUMMARY OF ANALYTICAL RESULTS

FOR HRI NO. 46532-2 (Off-site Containment Area)

Hazen Sample No. 46532 Warzyn Sample No. Vista Sample No. Sample Description Units	ACS-COOFF-02-01 935754-001	18.2-2-S2H 935754-002 High Retort Coked Solids ug/Kg	18.3-2-S2L 935754-003 Low Retort Coked Solids ug/Kg	18.23-2-L1(W) 935754-004U Water Condensate	18.23-2-L1(O) 935754-004L Oil Condensate	18.23-253 Combusted	Remediation Level (RFQ Table 1)
Di-n-butyl Phthalate Pyrene Butylbenzyl Phthalate Benzo(a)anthracene Bis (2-ethylhexyl) Phthalate Chrysene Di-n-octyl Phthalate Benzo (b) fluoranthene Carbonate C Total Carbon Organic Carbon Simulated Distillation Loss on Ignition (LOI) Moisture	71,000 ND (33,000) 51,000 ND (33,000) 210,000 ND (33,000) ND (33,000) ND (33,000) .48% 8.93% 8.45% COMPLETED 1.42% 21.7%	ND (330) ND (330) ND (330) ND (330) ND (330) ND (330) ND (330) ND (330) .02% .57% .55%	ND (330) ND (330) ND (330) ND (330) ND (330) ND (330) ND (330) ND (330) .02% .88% .86%	19/Kg 570,000 44,000 J 240,000 18,000 J 1,100,000 22,000 J 16,000 J 17,000 J NA NA	ND (100,000) NA NA NA NA COMPLETED	Solids NA	2,300,000 1,100

ND = Not detected; reporting limit in parenthesis.

J = Detected below reporting limit; quantitation may be unreliable.

TABLE 4
SUMMARY OF ANALYTICAL RESULTS

FOR HRI NO. 46532-3 (Off-site Containment Area [spiked])

Hazen Sample No. 46532	18.5-35-51	18.6-3S-S2H	18.7-3S-S2L	18.67-3S-L1(W)	18.67-3S-L1(O)	
Warzyn Sample No.	ACS-COOFF-03-01		4.7		er Alfre er eff lage	Remediation
Vista Sample No.	935805-001	935805-003	935805-004	935805-007L	935805-0070	Level
Sample Description		High Retort	Low Retort	Water	Oil	(RFQ Table 1)
	Feed	Coked Solids	Coked Solids	Condensate	Condensate	W. 1. A.
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	(1) ug/Kg
TRPH	7,700,000	ND (40,000)	ND (40,000)	NA	NA	UUINU
Oil and Grease	4,700,000	NA	NA	NA	NA NA	
VOCs						
Chloromethane	ND (25,000)	ND (1,000)	ND (1,000)	*NOTE: VOC	ND (5,000,000)	
Methylene Chloride	ND (25,000)	120 J	100 J	Analyses is reported	11,000,000	0.000
Acetone	113,000	5,400 J	1,200 J	for the oil conden-	800,000,000	6,200
Carbon Disulfide	ND (100,000)	ND (500)	170 J	sate but the sample	ND (2,500,000)	2,400,000
1,1 Dichloroethene	103,000	ND (500)	ND (500)	is a composite of	1,500,000 J	
1,1 Dichloroethane	ND (25,000)	ND (500)	ND (500)	the oil and the	4,700,000	98
1,2 Dichloroethenes, Total	NA	ND (500)	ND (500)	water.		252 222
Chloroform	ND (25,000)	ND (500)	ND (500)	1	ND (2,500,000)	250,000
1,2 Dichloroethane	202,000	ND (500)	ND (500)		ND (2,500,000)	9,500
2-Butanone (MEK)	91,400	140 J	ND (10,000)		30,000,000	640
1,1,1-Trichloroethane	1,110,000	350 J	ND (500)		390,000,000	620,000
1,2-Dichloropropane	ND (25,000)	· ND (500)	ND (500)		12,000,000	2,300,000
Trans-1,3-Dichloropropene	ND (25,000)	ND (500)	ND (500)		ND (2,500,000)	420
Trichloroethene	378,000	ND (500)	ND (500)		ND (2,500,000)	
Dibromochloromethane	ND (25,000)	ND (500)	ND (500)	<u> </u>	7,000,000	5,300
Benzene	ND (40,500)	ND (500)	ND (500)		ND (2,500,000)	
Cis-1,3-Dichloropropene	ND (25,000)	ND (500)	ND (500)		21,000,000	1,000
Bromoform	ND (25,000)	ND (500)	ND (500)		ND (2,500,000)	
4-Methyl-2-Pentanone (MIK)	ND (100,000)	ND (5,000)	ND (5,000)		ND (2,500,000)	
Tetrachloroethene	874,000	ND (500)	ND (500)		8,500,000 J	63,000
Toluene	783,000	120 J	ND (500)		7,200,000	1,100
Chlorobenzene	ND (25,000)	ND (500)	ND (500)		5,400,000	5,000,000
Ethylbenzene	146,000	ND (500)	ND (500)		ND (2,500,000)	150,000
Styrene	ND (100,000)	ND (500)	ND (500)		950,000 J	1,300,000
Xylenes Total	830,000	ND (500)	ND (500)	▼	1,700,000 J	1,700
		h	,,,,,,,,		5,600,000	2.6E7

DIONE 92.5 RETBLARVENIS TELLED BY

TABLE 4 (Continued) SUMMARY OF ANALYTICAL RESULTS

FOR HRI NO. 46532-3 (Off-site Containment Area [spiked])

Hazen Sample No. 46532	18.5-3S-S1	18.6-3S-S2H	18.7-3S-S2L	18.67-3S-L1(W)	18.67-3S-L1(Q)	
Warzyn Sample No.	ACS-COOFF-03-01	•			10.07.00 2.107	Remediation
Vista Sample No.	935805-001	935805-003	935805-004	935805-007L	935805-0070	Level
Sample Description		High Retort	Low Retort	Water	Oll	(RFQ Table 1)
	Feed	Coked Solids	Coked Solids	Condensate	Condensate	(1)
Units	ug/Kg	u g/K g	ug/Kg	ug/Kg	ug/Kg	ug/Kg
PCBs						Water Ohing
Aroclor 1248	150,000	ND (1,000)	ND (1,000)	69,000	2,500,000	2,000
Aroclor 1254	NA	ND (1,000)	ND (1,000)	ND (10,000)	ND (100,000)	2,000
SVOCs					115 (100,000)	2,000
Phenol	15,400	ND (1,650)	ND (1,650)	740,000	1,600,000	
Bis (2-chloroethyl)ether	ND (500)	ND (1,650)	ND (1,650)	41,000 J	430,000	
Benzyl Alcohol	NA NA	ND (3,300)	ND (3,300)	83,000 J	530,000 J	1
1,2-Dichlorobenzene	ND (900)	ND (1,650)	ND (1,650)	ND (100,000)	170,000	
Bis(2-chloroisopropyl)ether	25,000	ND (10,000)	ND (10,000)		ND (10,000)	
2-Methylphenol	NA	ND (1,650)	ND (1,650)	41,000 J	360,000	
4-Methylphenol	NA	ND (1,650)	ND (1,650)	87,000 J	480,000	
Isophorone	ND (300)	ND (1,650)	ND (1,650)	31,000 J	830,000	7 200
2-Nitrophenol	ND (1,800)	ND (1,650)	ND (1,650)	ND (100,000)	780,000	7,200
2,4-dimethylphenol	ND (16,700)	ND (1,650)	ND (1,650)	ND (100,000)	ND (100,000)	
Benzoic Acid	NA	ND (8,500)	ND (8,500)	450,000	1,900,000 J	
Naphthalene	45,800	ND (1,650)	ND (1,650)	17,000J	-	
4-Chloroanilene	NA	ND (3,300)	ND (3,300)	ND (200,000)	1,300,000	82,000
Hexachlorobutadiene	ND (500)	ND (1,650)	ND (1,650)	ND (100,000)	ND (200,000)	
2-Methylnaphthalene	NA	ND (1,650)	ND (1,650)	ND (100,000)	ND (100,000)	360
Hexachlorocyclopentadiene	ND (9,500)	ND (1,650)	ND (1,650)	ND (100,000)	840,000	į
Dimethyl Phthalate	ND (700)	ND (1,650)	ND (1,650)	ND (100,000)	ND (100,000) 69,000 J	
Acenaphthene	1,040	ND (1,650)	ND (1,650)	ND (100,000)	ND (100,000)	
Acenaphthylene	ND (130)	ND (1,650)	ND (1,650)	ND (100,000)		
Dibenzofuran	NA ·	ND (1,650)	ND (1,650)	ND (100,000)	23,000 J ND (100,000)	
Diethyl Phthalate	ND (1,000)	ND (1,650)	ND (1,650)	ND (100,000)	ND (100,000)	
Fluorene	ND (130)	ND (1,650)	ND (1,650)	ND (100,000)	36,000 J	
Hexachlorobenzene	ND (1,900)	ND (1,650)	ND (1,650)	ND (100,000)	ND (100,000)	
Phenanthrene	1,260	ND (1,650)	ND (1,650)	ND (100,000)	44,000 J	18

OF AVOID DO THE WAY OF BESTER SHOW

TABLE 4 (Continued) SUMMARY OF ANALYTICAL RESULTS

FOR HRI NO. 46532-3 (Off-site Containment Area (spiked))

Hazen Sample No. 46532	18.5-35-51	18.6-3S-S2H	18.7-35-52L	18.67-35-L1(W)	18.67-35-L1(O)	18.67-39-53	275
Warzyn Sample No. Vista Sample No.	ACS-COOFF-03-01 935805-001	935805-003	935805-004	935805-007L	935805-007U		Remediation
Sample Description Unite		High Retort Coked Solids ug/Kg	Low Retort Coked Solids ug/Kg	Water Condensate ug/Kg	Oil Condensate ug/Kg	Combusted Solids	(RFQ Teble 1) (1) ug/Kg
Anthracene Di-n-butyl Phthalate Pyrene Butylbenzyl Phthalate Benzo(a)anthracene Bis (2-ethylhexyl) Phthalate Chrysene Di-n-octyl Phthalate Benzo (b) fluoranthene Diphenyl ether Cresols Carbonate C (%) Total Carbon Organic C Simulated Distillation Loss on Ignition (LOI)	ND (130) 33,700 ND (130) 9,400 ND (130) 162,000 7,250 <4,700 <130 70,500 29,100 .56 4.57 4.01 COMPLETED 2.1% 18.6%	ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (10,000) ND (10,000) .07 .53 .46	ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (1,650) ND (10,000) .06 .79 .73	ND (100,000) ND (100,000) ND (100,000) ND (100,000) 29,000 J ND (100,000) ND (100,000) ND (100,000) ND (100,000) ND (100,000)	14,000 J 290,000 14,000 J 49,000 J ND (100,000) 1,300,000 120,000 11,000 J ND (100,000) ND (10,000) ND (10,000) NA NA NA COMPLETED	NA NA NA NA NA NA NA NA .20% .26%	2,300,000 1,100

⁽¹⁾ The sum of Method 8240 analytes exceed 100%. The method is designed for trace analysis with an original detection limit, before dilutions of 6 ug/kg.

TO SECURE TO A HOUSE THE SECURE OF

A certain level of error is inherent to each serial dilution. Several dilutions were required to analyze the high concentrations of any compounds present in the sample. ND = Not detected; reporting limit in parenthesis.

J = Detected below reporting limit; quantitation may be unreliable.

TABLE 5
SUMMARY OF ANALYTICAL RESULTS

FOR HRI NO. 46532-4 (On-site Containment Area [spiked])

			The multipo one	Langa (abuven))		
Hazen Sample No. 46532	18.8-4S-S1	18.9-4S-S2H	18.10-45-S2L	18.910-4S-L1(W)	18.910-4S-L1(0)	
Warzyn Sample No.	ACS-TP02A-01		•	· · ·	10101010101	Remediation
Vista Sample No.	935805-002	935805-005	935805-006	935805-008L	935805-008U	
Sample Description		High Retort	Low Retort	Water	Oil	Level (RFQ
	Feed	Coked Solids	Coked Solids	Condensate	Condensate)
Units		ug/Kg	ug/Kg	ug/Kg	ug/Kg	Table 1)
TRPH	29,000,000	ND (40,000)	ND (40,000)	NA	NA NA	ug/Kg
Oil and Grease	400,000,000	NA	NA	NA	NA NA	
VOCs					147	
Chloromethane	6,340,000	ND (1,000)	ND (1,000)	ND (5,000,000)	ND (5,000,000)	
Bromomethane	5,400,000	ND (300,000)	ND (300,000)	10,000,000	ND (10,000)	
Chloroethane	ND (60,000)	110 J	ND (1,000)	ND (5,000,000)	ND (5 000 000)	
Methylene Chloride	ND (60,000)	ND (500)	ND (500)	ND (2,500,000)	ND (5,000,000)	
Acetone	86,600,000	1,800 J	580 J	16,000,000 .1	ND (2,500,000)	6,200
Carbon Disulfide	ND (240,000)	ND (500)	ND (500)	ND (2,500,000)	32,000,000 J	2,400,000
1,1 Dichloroethene	ND (60,000)	ND (500)	140 J	700,000 J	ND (2,500,000)	
1,1 Dichloroethane	ND (60,000)	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	98
1,2 Dichloroethenes, Total	NA	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	
Chloroform	ND (60,000)	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	250,000
1,2 Dichloroethane	ND (60,000)	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	9,500
2-Butanone (MEK)	6,000,000	ND (10,000)	ND (10,000)		ND (2,500,000)	640
1,1,1-Trichloroethane	19,700,000	220 J	8,700	ND (50,000,000)	ND (50,000,000)	620,000
1,2-Dichloropropane	ND (60,000)	ND (500)	ND (500)	11,000,000	19,000,000	2,300,000
Trans-1,3-Dichloropropene	ND (60,000)	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	
Trichloroethene	134,000	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	
Dibromochloromethane	ND (60,000)	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	5,300
Benzene	5,110,000	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	
Cis-1,3-Dichloropropene	ND (60,000)	ND (500)	ND (500)	9,500,000	ND (2,500,000)	1,000
Bromoform	ND (120,000)	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	
4-Methyl-2-Pentanone (MIK)	ND (240,000)	ND (5,000)	ND (5,000)	ND (2,500,000)	ND (2,500,000)	
Tetrachloroethene	3,900,000	ND (500)	ND (500)	ND (25,000,000)	ND (25,000,000)	630,000
Toluene	353,000	ND (500)		6,700,000	ND (2,500,000)	1,100
Chlorobenzene	ND (60,000)	ND (500)	ND (500)	1,400,000	ND (2,500,000)	5,000,000
Ethylbenzene	159,000	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	150,000
Styrene	ND (240,000)	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	1,300,000
Xylenes Total	1,960,000	ND (500)	ND (500)	ND (2,500,000)	ND (2,500,000)	1,700
1.1,100.00	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	115 15007	ND (500)	3,300,000	ND (2,500,000)	2.6E7

consists of the contraction of the property of the contraction of the

TABLE 5 (Continued) SUMMARY OF ANALYTICAL RESULTS

FOR HRI NO. 46532-4 (On-site Containment Area (spiked))

Hazen Sample No. 46532	18.8-45-51	18.9-4S-S2H	18.10-45-S2L	18.910-45-L1(W)	18.910-4S-L1(O)	
Warzyn Sample No.	ACS-TP02A-01	·		10.010-10-21(11)	10.310-45-61(0)	5
Vista Sample No.	935805-002	935805-005	935805-006	935805-008L	935805-008U	Remediation Level
Sample Description	(a)	High Retort	Low Retort	Water	Oil	(RFQ
	Feed	Coked Solids	Coked Solids	Condensate	Condensate	
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Table 1)
PCBs				97.1.9	CU/KU	ug/Kg
Arochlor 1248	72,300	ND (1,000)	ND (1,000)	830,000	ND /1 000\	0.000
Arochlor 1254	NA	ND (1,000)	ND (1,000)	ND (100,000)	ND (1,000)	2,000
SVOCs			, , , , , , , , , , , , , , , , , , , ,	1100,0007	ND (1,000)	2,000
Phenol	ND (2,000)	ND (330)	ND (330)	1,600,000	290,000	
Benzyl Alcohol	NA	ND (660)	ND (660)	ND (200,000)	ND (200,000)	
1,2-Dichlorobenzene	ND (4,500)	ND (330)	ND (330)	ND (100,000)	ND(100,000)	
2-Methylphenol	NA	ND (330)	ND (330)	ND (100,000)	ND(100,000)	
4-Methylphenol	. NA	ND (330)	ND (330)	ND (100,000)	ND(100,000)	
Isophorone	225,000	ND (330)	ND (330)	4,300,000	140,000	7 200
2,4-dimethylphenol	ND (2,300)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	7,200
Benzoic Acid	NA	ND (1,700)	ND (1,700)	360,000 J	ND (500,000)	
Naphthalene	13,000	ND (330)	ND (330)	850,000	ND (100,000)	00.000
4-Chloroanilene	ND (2,500)	ND (660)	ND (660)	ND (200,000)	ND (200,000)	82,000
Hexachlorobutadiene	ND (2,500)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	200
2-Methylnaphthalene	NA	ND (330)	ND (330)	210,000	ND (100,000)	360
Hexachlorocyclopentadiene	ND (47,500)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	
2-Chloronapthalene	ND (1,500)	ND (330)	ND (330)	50,000 J	ND (100,000)	
Dimethy Phthalate	ND (3,500)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	
Acenaphthene	ND (650)	ND (330)	ND (330)	120,000		
Acenapthylene	ND (650)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	
Dibenzofuran	NA	ND (330)	ND (330)	770,000	ND (100,000)	
Diethyl Pthalate	ND (5,000)	ND (330)	ND (330)	ND (100,000)	ND (100,000) ND (100,000)	
Fluorene	ND (650)	ND (330)	ND (330)	110,000		
Hexachlorobenzene	ND (9,500)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	
Phenanthrene	ND (650)	ND (330)	ND (330)	130,000	ND (100,000)	18
Anthracene	ND (650)	ND (330)	ND (330)	65,000 J	ND (100,000)	
Di-n-butyl Phthalate	ND (2,500)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	
Fluoranthene	ND (650)	ND (330)	ND (330)	90,000 J	ND (100,000) ND (100,000)	2,300,000

TABLE 5 (Continued) SUMMARY OF ANALYTICAL RESULTS

FOR HRI NO. 46532-4 (On-site Containment Area [spiked])

				Common Area (2bike			
Hazen Sample No. 46532	18.8-4S-S1	18.9-4S-S2H	18.10-4\$-S2L	18.910-45-L1(W)	18.910-4S-L1(O)	18.23-2-53	
Warzyn Sample No.	ACS-TP02A-01		1	, , , , ,		10,20,4,00	0
Vista Sample No.	935805-002	935805-005	935805-006	935805-008L	935805-0080		Remediation
Sample Description	(a)	High Retort	Low Retort	Water	Oil		Level
	Feed	Coked Solids	Coked Solids	Condensate	Condensate	Camb	(RFQ
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	Combusted Solids	Table 1)
Pyrene	ND (650)	ND (330)	ND (330)	49,000 J	ND (100,000)		ug/Kg
Butylbenzyl Phthalate	ND (950)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	NA NA	
Benzo(a)anthracene	ND (650)	ND (330)	ND (330)	23,000 J	ND (100,000)	NA	
Bis (2-ethylhexyl) Phthalate	ND (17,500)	ND (330)	ND (330)	2,200,000	ND (100,000)	NA	
Chrysene	ND (650)	ND (330)	ND (330)	32,000 J	ND (100,000)	NA	1,100
Di-n-octyl Phthalate	ND (23,500)	ND (330)	ND (330)	ND (100,000)	ND (100,000)	NA	
Benzo (b) fluoranthene	ND (650)	ND (330)	ND (330)	14,000 J		NA	ļ
Diphenyl ether	4.75E7	ND (25,000)	ND (25,000)	1 1,000 3	ND (100,000)	NA	}
Carbonate C (%)	<.02	<.02	<.02	NA	ND (25,000)	NA]
Total Carbon (%)	50.53	0.76	0.77	NA NA	NA I	<0.02]
Organic C (%)	50.53	0.76	0.77	NA NA	NA NA	.05)
Simulated Distillation	COMPLETED			IVA	NA COLOR	.05	
Loss on Ignition (LOI) (%)	.87	.50	1,43		COMPLETED		}
Moisture	29.2						[

⁽a) The feed sample consisted of a solid and a liquid phase. The analytical results shown are for the solid phase.

DOWN BY SHOOTING ON SHIP THE SEC.

ND = Not detected; reporting limit in parenthesis.

J = Detected below reporting limit; quantitation may be unreliable.

TABLE 6
MINIMUM REMOVAL EFFICIENCIES
FOR VOCs. SVOCs, AND PCBs

Sample No.	Minimum %	Minimum %	Minimum %
	Removal	Removal	Removal
Compound	HRI 46532-2	HRI 46532-3	HRI 46532-4
VOCs		7.0002.5	11111-40552-4
Chloromethane	NA NA	NA	>99.9
Methylene Chloride	>99.9	NA	NA NA
Acetone	96.0	95.2	>99.9
Carbon Disulfide	NA	NA	NA NA
1,1 Dichloroethene	>99.9	99.5	NA NA
1,1 Dichloroethane	>99.9	NA	NA NA
1,2 Dichloroethenes, Total	NA	NA	NA NA
Chloroform	>99.9	NA	NA NA
1,2 Dichloroethane	>99.9	99.8	NA NA
2-Butanone	>99.9	99.8	99.8
1,1,1-Trichloroethane	NA	>99.9	>99.9
1,2-Dichloropropane	>99.9	NA	NA
Trans-1,3-Dichloropropene	>99.9	NA	NA
Trichloroethene	>99.9	>99.9	99.6
Dibromochloromethane	>99.9	NA	NA NA
Benzene	>99.9	NA	>99.9
Cis-1,3-Dichloropropene	>99.9	NA	NA
Bromoform	>99.9	NA	NA NA
Tetrachloroethene	>99.9	>99.9	>99.9
Toluene	>99.9	>99.9	99.9
Chlorobenzene	>99.9	NA NA	NA NA
Ethylbenzene	>99.9	NA NA	99.7
Styrene	>99.9	NA	NA
Xylenes Total	>99.9	>99.9	>99.9

The MY 92 6 Bridge Bryt ACC 13 of Let II.

TABLE 6 (Continued) MINIMUM REMOVAL EFFICIENCIES FOR VOCs, SVOCs, AND PCBs

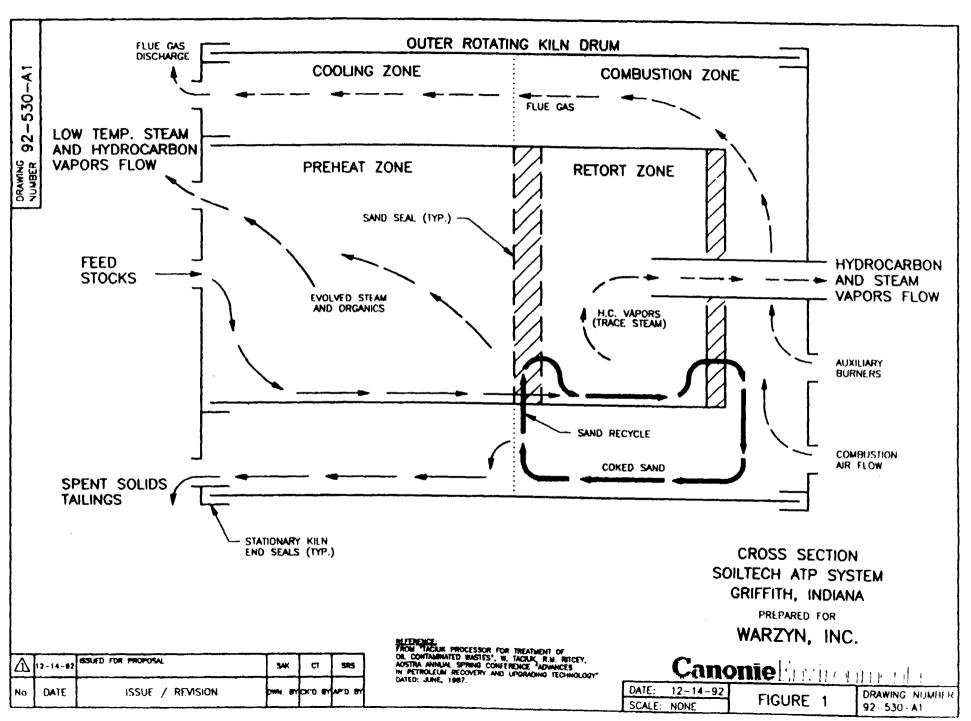
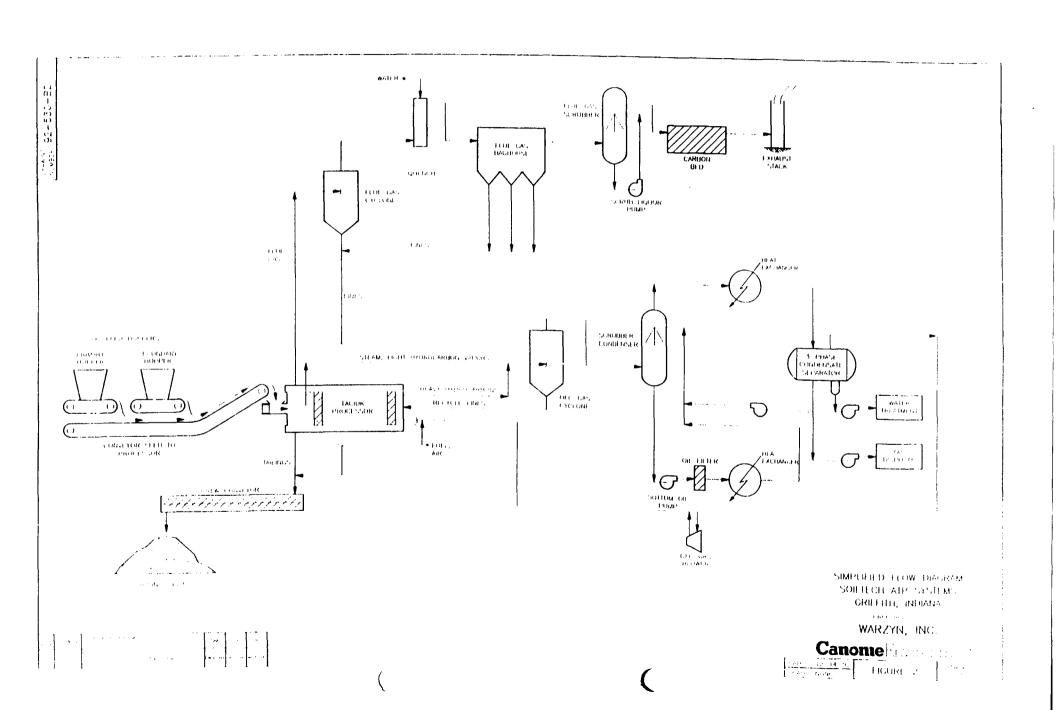

Sample No.	Minimum %	Minimum %	Minimum %
Compound	Removal HRI 46532-2	Removal HRI 46532-3	Removal HRI 46532-4
PCBs			
Aroclor 1248	NA NA	99.3	98.6
Aroclor 1254	98.7	NA	NA NA
SVOCs			
Phenol	99.8	89.3	NA
2-Methylphenol	96.7	NA	NA NA
4-Methylphenol	98.4	NA	NA
Isophorone	99.8	NA	99.9
2,4-dimethylphenol	96.7	NA	NA
Naphthalene	99.7	96.4	97.5
Hexachlorobutadiene	98.1	NA	NA NA
2-Methylnaphthaline	99.5	NA	NA
Dimethy Phthalate	97.3	NA	NA NA
Diethyl Phthalate	95.0	NA	NA NA
Phenanthrene	90.0	NA	NA NA
Di-n-butyl Phthalate	99.5	95.1	NA NA
Butylbenzyl Phthalate	99.4	82.4	NA NA
Bis (2-ethylhexyl) Phthalate	99.8	99.0	NA NA
Chrysene	NA	77.2	NA NA

TABLE 7
COMPOUNDS NOT DETECTED WITH THE DETECTION LIMIT ABOVE
THE REMEDIATION LEVEL


Hazen Sample No. 46532 Sample Description Units	18.6 High Retort Coked Solids ug/Kg	18.7 Low Retort Coked Solids ug/Kg	18.9 High Retort Coked Solids ug/Kg	18.10 Low Retort Coked Solids ug/Kg	Remediation Level (RFQ Table 1) ug/Kg
1.1 Dichloroethene	ND (500)	ND (500)	ND (500)	140J	98
1,2-Dichloropropane	ND (500)	ND (500)			420
Hexachlorobutadiene	ND (1,650)	ND (1,650)		H	360
Hexachlorobenzene	ND (1,650)	ND (1,650)	ND (330)	ND (330)	18
Bis (2-ethylhexyl) Phthalate	ND (1,650)	ND (1,650)			1,100

J = Estimated value below the detection limit.

ND = Not detected; reporting limit in parenthesis.

...

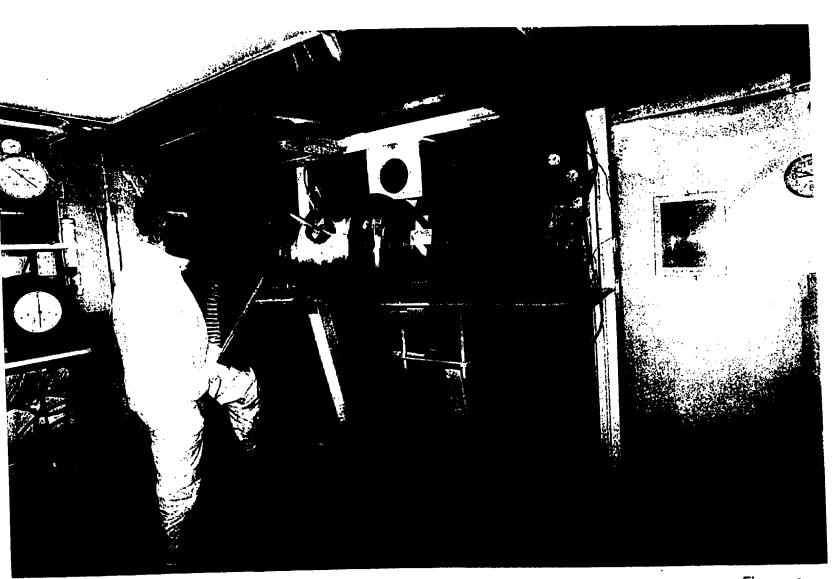


Figure 3
SoilTech ATP System
Bench-Scale Test Unit

Canonie Navional

22

. •

APPENDIX A TREATABILITY STUDY REPORT BY HAZEN

Hazen Research, Inc.
4601 Indiana St. • Galden, Color (14.6)
Tel (303) 279-4501 • Telex 45-861
FAX (303) 278-1528

Prepared for

SoilTech ATP Systems, Inc. 94 Inverness Terrace East, Suite 100 Englewood, CO 80112

AMERICAN CHEMICAL SERVICES TREATABILITY STUDY

February 26, 1993

Copy No. / HRI Project 7684-18

AMERICAN CHEMICAL SERVICES TREATABILITY STUDY

Prepared by:

Gerome P. Downey

Project Manager

Approved by:

Rodney C. Hodgson

Vice President

TABLE OF CONTENTS

	Page
INTRODUCTION AND SUMMARY	1
BENCH-SCALE TEST DESIGN AND PROCEDURES	. 2
APPARATUS	2
PROCEDURES	3
RESULTS AND OBSERVATIONS	6
CHARACTERISTICS OF FEED MATERIAL AND PROCESS RESIDUES	6
PROCESS RESULTS AND PERFORMANCE DATA	17
APPENDIX A - TABLES	
APPENDIX B - FIGURES	
A DDENTILY C DUOTOCD A DUS	

INTRODUCTION AND SUMMARY

į

Hazen Research, Inc. conducted a series of bench-scale treatability tests on samples containing polychlorinated biphenyls (PCBs) from the American Chemical Services Superfund Site in Griffith, Indiana. The samples were prepared by David Pieczynski of Warzyn, Inc. and were shipped to Hazen from their Addison, Illinois office. These samples were packaged and shipped in compliance with the established Hazen and SoilTech protocols. The source samples arrived in two shipments. The first shipment consisted of three 5-gallon pails which were designated ACS-COTREAT 02-02 (HRI No. 46532-1), ACS-COOFF 02-01 (HRI No. 46532-2), and ACS-COOFF 03-01 (HRI No. 46532-3). The second shipment consisted of two 2-gallon pails designated as ACS-TPO2A-01 (HRI No. 46532-4) and ACS-TPO2A-02 (HRI No. 46532-5). Additionally, Hazen received a third shipment of two sets of aliquots from the Warzyn, Inc. analytical laboratory in Madison, Wisconsin. The aliquots, which were acetone-based and contained PCB (Arochlor 1248) as well as certain other organic compounds, were provided to augment or "spike" selected source samples prior to treatability testing. The spiking sets were mixed with Source Samples ACS-COOFF 03-01 (HRI No. 45632-3) and -TPO2A-01 (HRI No. 46532-4) according to instructions from Warzyn, Inc. These two spiked source samples along with ACS-COOFF 02-01 (HRI No. 46532-2) were used in the treatability tests.

The treatability tests were conducted to demonstrate the effectiveness and applicability of the SoilTech Anaerobic Thermal Process (ATP) System in removing organic contamination from these samples. SoilTech has contracted with Hazen to conduct bench-scale treatability tests on soil, sediments, and sludges containing wastes regulated under the Toxic Substance Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). SoilTech has elected to have Hazen perform only the treatability tests and selected analytical procedures described herein; interpretation of the analytical data remains within SoilTech's province.

The treatability tests were performed from January 13, 1993, through January 29, 1993. The treatability testing program consisted of nine thermal desorption runs and three combustion runs. Representative samples of the first three source samples (HRI No. 46532-1, 46532-2, and 46532-3), as well as condensate and coked products were sent to Vista Laboratories, Broomfield, Colorado for PCB and other chemical analyses. Representative samples of the two spiked source samples (HRI No. 46532-3 and 46532-4) were sent to Warzyn, Inc.'s analytical laboratory in Madison, Wisconsin for PCB and other chemical analyses. Representative samples of these two spiked source samples were also sent to Vista Laboratories, Broomfield, Colorado, for certain chemical analyses other than PCB.

Pending their disposal, the remaining untreated source samples, process products and residues, and used personnel protective equipment have been collected and temporarily stored at Hazen. In compliance with Hazen's Environmental Protection Agency "Approval to Conduct Research and Development Tests to Dispose of Polychlorinated Biphenyls (PCBs)", the materials will be transported offsite for incineration in an approved PCB disposal facility.

BENCH-SCALE TEST DESIGN AND PROCEDURES

The bench-scale ATP test unit, or batch reactor, was designed to simulate the conditions present in the preheat, reaction, and combustion zones of SoilTech, Inc.'s commercial ATP System. SoilTech evaluates the effects of the process variables on product quality by testing the feedstocks on bench scale. Material balances and product closures are calculated by Hazen at the conclusion of each test as a quality control check.

Chemical analyses of the treatability test products are used to evaluate the effects of thermal treatment. In the American Chemical Services treatability study, samples of the test products were sent to Vista Laboratories, Broomfield, Colorado. The analytical data were reported directly to SoilTech. SoilTech has not requested that Hazen evaluate the efficiency or effectiveness of thermal desorption in the batch tests.

APPARATUS

The bench-scale test unit is an electrically-heated, rotary-drum reactor with internal measurements of 14 inches in diameter and five inches in length. The reactor drum can be rotated at speeds ranging from three to 16 revolutions per minute by an electric, variable-speed drive assembly. The reactor is heated by electrical elements installed on the outside of the steel reactor shell. Two slip-ring series provide electric power to the heaters and obtain the thermocouple outputs. Nine thermocouples located in or around the reactor measure the temperatures of the steel shell (at various locations), the solid charge within the shell (bed temperature), and the temperature of the exiting vapor. Thermocouple signals are digitally displayed and continually processed by a strip chart recorder to indicate the heating profile. The reactor is charged and unloaded through a five-inch access port with a quick-lock cap.

A pipe passing axially through the reactor drive assembly introduces nitrogen purge gas into the reactor during each test run. This nitrogen passes through a gas meter, a rotary seal, and the reactor feed pipe. Nitrogen flow is discontinued once the reactor has been charged and the charge portal sealed. Purge gas, steam, and organic vapors generated while processing the sample exit the reactor and pass through a two-stage condenser system.

The primary condenser is a water-cooled, stainless steel, double-pipe heat exchanger. The condenser is inclined at approximately 45° to allow the condensed liquids to drain by gravity into the collection reservoir. Aqueous and organic fluids accumulate in the reservoir, while the gases disengage and pass upward through a secondary condenser tube (also a water-cooled, double-pipe heat exchanger) situated vertically above the reservoir. Any liquids that condense within this device also drain into the condensate trap. Condensed liquids are recovered and submitted for chemical analysis.

Gases emerge from the secondary condenser, pass through an impinger to remove any remaining moisture or organic mist, and are then discharged through a wet gas meter. This meter measures the total volume of gases evolved during each batch test. After leaving the wet gas meter, the gases pass through a carbon column to the laboratory gas cleaning system.

PROCEDURES

Thermal Desorption Tests

One source sample and two spiked source samples were tested in this treatability study. All the source samples could be generally described as sludge materials. Characterization data provided by SoilTech indicated the PCB contamination levels of the source samples could be as high as 1435 parts per million (ppm). The samples were also reported to contain other organic and inorganic contaminants. The organic contaminants, other than PCBs, were reported to be between 1 and 20%. The inorganic contaminants - lead, barium, chromium(VI), cadmium, and antimony - were reported to be less than 17,200, 6,400, 3,750, 1,700, and 152 parts per million, respectively.

A ramp test was completed on one as-received source sample and on each of the two spiked source samples. In each ramp test, the sample was heated from a relatively low (ambient) initial temperature to approximately 1,200°F. The rate of gas evolution and condensate production with respect to temperature was monitored throughout the test.

The durations of the ramp tests varied, depending on the attainment of specific objectives. These included: 1) the specified bed temperature, 2) cessation of liquid condensate formation, and 3) a decrease in gas evolution to a level below 0.004 actual cubic feet per minute (act/m). Once the ramp objectives were met, the test was concluded by purging the reactor with nitrogen, removing the reactor lid, and recovering the solid residue. This material was allowed to cool, then weighed and sampled for chemical analysis.

Fixed-temperature retort runs were also conducted on the same as-received source sample and the two spiked samples. The purpose of retort tests is to simulate direct injection of the contaminated material into the retort zone of the full-scale ATP unit. The source sample and each of the two spiked source samples were evaluated in two retort runs with bed temperatures of approximately 1,100 and 1,000°F. The duration of the retort tests was set at 30 minutes. In these tests, roughly equal masses of sample and silica sand were charged to the reactor. The treated solids recovered from these tests were sampled for analysis.

The solids produced by the ramp and retort runs are referred to as "coked solids" because the relatively high reactor-bed temperature, in combination with the absence of oxygen in the reactor atmosphere, results in the formation of coke (carbon), which coats the solid residue particles. The coked solids represent the product of the full-scale ATP unit's retort zone. The coked solids are submitted for organic analysis to determine the degree of decontamination achieved by thermal desorption.

During all ramp and retort runs, aqueous and organic liquid condensates were collected in the condensate reservoir. The condensates were recovered and their masses and volumes measured for the material balances prior to sampling for laboratory analysis. The volume of the gases produced was also measured and recorded for the material balances.

Combustion Tests

In the commercial ATP system, the coked solids move through the combustion zone after being fully decontaminated in the retort zone. Bench-scale combustion testing was performed to represent this step. The combustion test product simulates the final product of the ATP process.

The batch combustion tests were conducted in the same reactor as the ramp and retort tests, and the general combustion test procedure resembles that of the retort tests in many respects. However, in combustion tests, air is continuously passed through the reactor to react with the carbon that coats the solids. A lifter is also installed in the retort to facilitate combustion by lifting and dropping the coked solids through the air stream.

Three combustion tests were performed in this treatability study. The coked solids produced in the 1,000 and 1,100°F retort tests on each sample were blended to produce the three combustion test feed samples. In these tests, the reactor was preheated to approximately 1,200°F and purged with nitrogen before the test charge was loaded. Once the reactor was charged and sealed, the nitrogen flow was discontinued and approximately 15 actual cubic feet per hour (acf/h) of combustion air was injected through the same piping system employed in the retort tests. Likewise, the product gases passed through the gas metering system described previously. The exhaust gases were monitored with an oxygen meter to determine when combustion was completed. Combustion was considered complete when the oxygen content of the exhaust gases was approximately the same as that of the air in the lab. The offgas volume was monitored throughout the test; system gases were discharged through the laboratory ventilation and filtration system. At the conclusion of the combustion test, the combusted solids were removed from the retort, weighed, and prepared for chemical analysis.

RESULTS AND OBSERVATIONS

CHARACTERISTICS OF FEED MATERIAL AND PROCESS RESIDUES

Observations regarding the physical appearance and qualities of the source samples and various process residues (i.e. coked solids, liquid condensate, and noncondensable gases) are summarized below.

Source Samples

Three source samples were received at Hazen on Thursday, December 24, 1992. The samples originated at the American Chemical Services Superfund Site in Griffith, Indiana. The samples were prepared by David Picczynski of Warzyn, Inc. and were shipped from their Addison, Illinois office before arriving at Hazen. The samples were in compliance with Hazen and SoilTech shipping protocols.

Each of the three source samples was packed in one 5-gallon plastic pail fitted with a locking lid. The pails were clean, dry, intact, and sealed. The samples were logged into Hazen records, assigned a Hazen identification number, and weighed. This information is tabulated below. The Hazen sample identification number (HRI No.) as well as the client's designation will serve to identify each source sample throughout this report.

Client Designation	HRI No.	Gross Weight, kg
ACS-COTREAT 02-02	46532-1	36.4
ACS-COOFF 02-01	46532-2	30.5
ACS-COOFF 03-01	46532-3	29.5

These three source sample containers were first opened and the samples were blended on December 28, 1992. A representative subsample of each source sample was sent to Vista Laboratories, Broomfield, Colorado, for PCB and semivolatile organic compound (SVOC) analysis. Results from the PCB analysis indicated that the PCB concentration for each of the source samples was below 100 parts per billion (ppb).

Two additional source samples were received at Hazen on Wednesday, January 13, 1993. The samples originated at the American Chemical Services Superfund Site in Griffith, Indiana. The samples were prepared by David Pieczynski of Warzyn, Inc. and were shipped from their Addison. Illinois office before arriving at Hazen. The samples were also shipped in compliance with Hazen and SoilTech protocols.

Each of the two additional source samples was packed in one 2.5-gallon plastic pail fitted with a locking lid. The pails were clean, dry, intact, and sealed. The samples were logged into Hazen records, assigned a Hazen identification number, and weighed. This information is tabulated below:

Client Designation	HRI No.	Gross Weight, kg
ACS-TPO2A-01	46532-4	13.3
ACS-TPO2A-02	46532-5	14.0

Based on Warzyn, Inc's decision, only Samples ACS-COOFF 02-01 (HRI No. 46532-2), ACS-COOFF 03-01 (HRI No. 46532-3), and ACS-TPO2A-01 (HRI No. 46532-4) were used in the treatability study. It was further decided by SoilTech that the latter two samples would be spiked with solutions containing PCBs supplied by Warzyn, Inc.

On Monday, January 25, 1993, Hazen received a shipment of spiking solutions prepared by Patrick Letterer of Warzyn, Inc. and shipped from their Madison, Wisconsin laboratory. The shipment contained two sets of spiking solutions. Each set contained four glass bottles with 100 milliliter (ml) aliquots in each bottle. The spike solution concentrations as reported by Warzyn, Inc. are tabulated below:

Set 1

Compound	Concentration per Aliquot (mg/kg)
Aroctor 1248	600
1,1,1-Tricholoethane	15,000
Benzene	6,000
Isophorone	3,000
bis(2-ethylhexyl)phthalate	2,100

Compound	Concentration per Aliquot (mg/kg)
1,1,1-trichloroethane	45,000
tetrachloroethane	9,000
methyl ethyl ketone	9,000
trichloroethene	3,000
bis(2-ethylhexyl)phthalate	2,100
bis(2-chloroethyl)ether	225
chrysene	90
Aroclor 1248	1,500

On Tuesday, January 26, 1993, Hazen received instructions for preparing the two spiked source samples from Patrick Letterer of Warzyn, Inc. Following these instructions, source sample ACS-COOFF 03-01 (HRI No. 46532-3) was opened, and the sample was removed and quartered into four clean two-gallon pails. One bottle of the Set I spike solutions was added to each quarter (in 25-ml aliquots with blending after each addition). The spiked quarters were then recombined, with blending, into a single pail. Again following the instructions from Warzyn, Source Sample ACS-TPO2A-01 was opened and treated in the same manner as the other source sample except that Set 2 spike solutions were used.

The sample containers for 46532-2, 46532-3 (spiked), and 46532-4 (spiked) were opened for inspection on January 13, 27, and 28, 1993, respectively. The containers were scanned for beta/gamma radiation; no radiation above background levels was detected. Once the container was opened, a photoionization detector was used to measure the concentration of organic vapors in the freeboard above the sample. Organic vapor concentrations for 46532-2, 46532-3 (spiked), and 46532-4 (spiked) were measured at 122, 95, and 163 ppm, respectively. Each of the samples was thoroughly mixed to ensure a representative sample for bench testing and chemical analysis. Hazen observations regarding the color, matrix, and other characteristics of the source sample are detailed below.

• HRI No. 46532-2: ACS-COOFF 02-01 was a brown-grey granular mud material with approximately one-half inch of brown water standing on top. Several brown and white pebbles were also observed. The sample was easily mixed by hand and resembled thick, wet concrete. A screwdriver was easily inserted and stood upright in the blended material. When it was removed, the screwdriver had a thin coating of brown-grey material. The moisture content for the sample was determined to be 21.7% (wet basis) and the ash was 71.3%. Loss on ignition for the ash material was 1.42%.

- HRI No. 46532-3 (spiked): ACS-COOFF 03-01 was a moist dark brown to black soil. The material contained some rocks up to one-half inch in diameter, humus, and a few tan clay chunks that broke apart easily. A screwdriver was easily inserted and stood upright in the blended material. The screwdriver blade was fairly clean upon its removal from the sample. The moisture content for the sample was determined to be 18.6% and the ash was 75.3%. Loss on ignition for the ash material was 2.15%.
- HRI No. 46532-4 (spiked): ACS-TPO2A-01 was a tan sludge material with dark brown crystals up to two inches in diameter, some sand or dirt, and some black streaks of an oil-like substance. The crystals broke up into small flakes with agitation. A screwdriver would not stand upright in the blended material; when removed, it was coated with a tan oily film. The moisture content for the sample was determined to be 29.2% and the ash was 47.5%. Loss on ignition for the ash material was 0.87%.

Particle size data for the source (feed) samples are presented in Appendix A, Tables 1 through 4, and are graphically depicted in Appendix B, Figures 1 through 3. The particle size distribution of a representative sample of the silica used in the retort tests is provided in Appendix A, Table 4, and shown in Figures 1 through 3.

Products

One ramp test was conducted on each of the three samples. Two retort tests at 1,000 and 1,100°F respectively (with a set duration of 30 minutes) were performed for each of the three samples. For each of the three samples, one combustion test was performed on a designated blend of the coked products from the previous retort tests. Hazen's observations of the physical characteristics of the coked solids and liquid condensates from the ramp and retort runs, as well as the combusted solids, are described in the subsequent text. Particle size data for the combustion products and silica sand used in the retort tests are presented in Appendix A, Tables 1 through 3, and graphically depicted in Appendix B, Figures 1 through 3. The approximate material balances for the ramp, retort, and combustion tests are also tabulated in Appendix B. Photographs of the test products appear in Appendix C.

Sample: ACS-COOFF 02-01

Test: Ramp

HRI No. 46532-2, Test 18.1: The ramp test with the ACS-COOFF 02-01 source sample was performed on January 13, 1993. In the ramp test, approximately two kilograms (kg) of the source sample were charged to the reactor at ambient temperature (approximately 65°F). The test was completed two hours and 18 minutes after the sample was sealed into the reactor. The final bed temperature was 1,199°F. The total gas volume for the run was 2.116 actual cubic feet (acf). The overall balance closure for the run was 85.7%.

The appearance of the liquid condensate changed throughout the course of the ramp test. These changes are summarized in Table 5 and are described below.

A milky-brown liquid condensate first appeared after the bed temperature reached 190°F. Within five minutes, the condensate formed three phases; the top phase was clear and brown, the middle a cloudy water color, and the bottom a dark brown. By the time the bed temperature had reached 546°F, the top and middle phases had obtained a slight yellow tint. These phases and colorations remained constant until the test was complete. The final condensate volume was 460 ml; the top layer was 80 ml, the middle layer was 340 ml, and the bottom layer was 40 ml.

The coked product was a dusty free-flowing material, some of which adhered to the reactor walls. The reactor required several cleaning steps to retrieve all of the product from the unit. The product was a pinkish tan. Particle size appeared to be less than 60 mesh, with the exclusion of a few one-inch diameter rocks.

Sample:

ACS-COOFF 02-01

Test:

Retort (30 minutes)

Temperature:

1,100°F

HRI No. 46532-2, Test 18.2: The retort test was conducted at the specified final bed temperature of 1,100°F and total time of 30 minutes. Approximately 1 kg of silica was placed in the reactor and preheated to 1,100° before the 1-kg sample was charged. After charging, the bed temperature dropped to 408°F. Two minutes after charging, the bed temperature was 638°F, the gas temperature was 729°F, and the cumulative gas volume was 0.567 acf. After 13 minutes, the bed temperature was 1,111°F, the gas temperature was 236°F, the cumulative gas volume was 1.105 acf, and the gas flow was 0.011 actual cubic feet per minute (acti/m). After 22 minutes, the gas flow had fallen to 0.0040 acti/m. The run was terminated 30 minutes after the sample was charged. The final bed temperature was 1,101°F, the gas temperature was 154°F, the cumulative gas volume was 1.224 act, and the gas flow was 0.0014 acti/m. The overall balance closure for the run was 99.5%.

There were 240 ml of condensate formed during the run. The condensate had two distinct layers, 40 ml of a black oily solution in the upper layer and 200 ml of a rust-brown solution at the bottom.

The coked product was a slightly dusty, free-flowing material which was easily retrieved from the reactor. The color of the material was a grey-black, but the sand particles were white and did not appear to be coated. The majority of the material appeared to be less than 50 mesh.

Sample:

ACS-COOFF 02-01

Test:

Retort (30 minutes)

Temperature:

1,000°F

HRI No. 46532-2, Test 18.3: The second retort test with this sample was conducted at the specified final bed temperature of 1,000°F and total time of 30 minutes. Approximately 1 kg of silica was placed in the reactor and preheated to 1,060°F before the 1-kg sample was charged. After charging the feed material, the bed temperature dropped to approximately 303°F. After two minutes, the bed temperature had reached 638°F, the gas temperature was 593°F, and the cumulative gas volume was 0.321 acf. After 12 minutes, the bed temperature was 1,025°F, gas temperature was 204°F, the cumulative gas volume was 0.827 acf, and the gas flow was 0.031 acf/m. After 27 minutes, the gas flow was 0.0024 acf/m. The test was terminated 30 minutes after the sample was charged to the reactor; the final bed temperature was 1,010°F, the gas temperature was 141°F, the cumulative gas volume was 0.934 acf, and the gas flow was 0.0013 acf/m. The overall balance closure for the run was 99.8%.

There were 240 ml of condensate formed during the run. The condensate had two distinct layers: 20 ml of a black oily solution in the top layer, and 220 ml of a rusty-brown solution in the bottom layer.

The coked product was a slightly dusty, free-flowing material which was easily retrieved from the reactor. The color of the material was grey-brown. As in the 1,100°F retort test, the sand particles were white and did not appear to be coated. The majority of the material appeared to be less than 50 mesh.

Sample:

ACS-COOFF 03-01(spiked)

Test:

Ramp

HRI No. 46532-3 (spiked), Test 18.5: The ramp test with the ACS-COOFF 03-01(spiked) source sample was performed on January 27, 1993. In the ramp test, approximately 2 kg of the source

sample were charged to the reactor at ambient temperature (approximately 65°F). The test was completed two hours and 11 minutes after the sample was sealed into the reactor. The final bed temperature was 1,202°F. The overall balance closure for the run was 96.2%.

The appearance of the liquid condensate changed throughout the course of the ramp test. These changes are summarized in Table 6.

The liquid condensate first appeared when the bed temperature had reached 191°F, it was clear at first but quickly turned brown in color. When the bed temperature had reached 203°F, the single layer of condensate was light brown in color. Five minutes later, the bed temperature was 291°F and the condensate had two layers. The top layer was a tan foam and the bottom layer was an opaque brown. The bottom layer appeared to contain more suspended particles. When the bed temperature reached 585°F, the condensate had three layers. The top layer was clear brown in color at this point; it gained volume slowly and turned black as the bed temperature rose from 585° to 1065°F. The middle layer gained volume, but remained about the same light green-brown color as the temperature was elevated from 585° to 808°F. As the bed temperature rose from 808° to 1065°F, the middle layer remained the same color but declined in volume. The bottom layer was tan in color and remained at the same volume until the bed temperature reached 900°F. The bottom layer remained tan and steadily increased in volume as the bed temperature rose from 900° to 1065°F. At a bed temperature of 1202°F the final volume for the condensate was 400 ml and the condensate had three layers. The top layer was a black solution with a volume of 50 ml, the middle layer was 250 ml of light green-brown solution, and the bottom layer was 100 ml of tan sediment.

The coked product was a dusty free-flowing material, some of which adhered to the reactor walls. The reactor required several stages of cleaning in order to retrieve the product. The material was mostly comprised of fine dark brown to black particles. Approximately 20% of the product material appeared to be in the particle size range of 10 mesh to one-quarter inch in diameter. There were a few white particles in this size fraction, but most of the material was grey to black in color. There were also a few flat metal pieces and a few rocks over one-half inch in diameter.

Sample:

ACS-COOFF 03-01 (spiked)

Test:

Retort (30 minutes)

Temperature:

1,100°F

HRI No. 46532-3 (spiked). Test 18.6: The retort test was conducted at the specified final bed temperature of 1,100°F and total time of 30 minutes. Approximately 1 kg of silica was placed in the

reactor and preheated to 1,120°F before the 1-kg sample was charged. After charging the feed material, the bed temperature fell to approximately 518°F. After three minutes, the bed temperature had reached 835°F, the gas temperature was 514°F, and the cumulative gas volume was 0.368 acf. After 13 minutes, the bed temperature reached 1120°F, the gas temperature was 182°F, the cumulative gas volume was 0.737 acf, and the gas flow was 0.021 acf/m. After 28 minutes, the gas flow was 0.0038 acf/m. The run was terminated 30 minutes after the sample was charged to the reactor. The final bed temperature was 1098°F, the gas temperature was 129°F, the cumulative gas volume was 0.846 acf, and the gas flow was 0.004 acf/m. The overall balance closure for the run was 97.8%.

There were 180 ml of condensate formed during the run. The condensate had two distinct layers: 10 ml of black solution in the upper layer, and 170 ml of brown solution in the bottom layer.

The coked product was a dusty free-flowing material and it was easily retrieved from the reactor. The majority of the material was sand and grey-brown to black fine particles. The sand particles were white and did not appear to be coated. There were a few agglomerated dark brown particles that broke up easily into fine particles. There were also a couple of rocks over one-half inch in diameter.

Sample:

ACS-COOFF 03-01 (spiked)

Test:

į

Retort (30 minutes)

Temperature:

1,000°F

HRI No. 46532-3 (spiked), Test 18.7: The second retort test with this sample was conducted at the specified final bed temperature of 1,000°F and total time of 30 minutes. Approximately 1 kg of silica was placed in the reactor and preheated to 1,120°F before the 1-kg sample was charged. After charging the feed material, the bed temperature fell to approximately 633°F. After four minutes, the bed temperature had reached 829°F, the gas temperature was 541°F, and the cumulative gas volume was 0.360 acf. After nine minutes, the bed temperature was 995°F, the gas temperature was 219°F, the cumulative gas volume was 0.507 acf, and the gas flow was 0.029 acf/m. After 24 minutes, the gas flow was 0.0034 acf/m. The run was terminated 30 minutes after the sample was charged to the reactor. The final bed temperature was 999°F, the gas temperature was 135°F, the cumulative gas volume was 0.659 acf, and the gas flow was 0.0020 acf/m. The overall balance closure for the run was 101.1%.

There were 200 ml of condensate formed during the run. The condensate had three distinct layers: 10 ml of black solution in the top layer, 150 ml of light brown solution in the middle layer, and 40 ml of brown solids in the bottom layer.

The coked product was a dusty free-flowing material and which was easily retrieved from the reactor. In general, the material was very similar in appearance to the coked product of Test 18.6, except that there were some metallic flakes present up to one-half inch in diameter.

Sample: ACS-TPO2A-01 (spiked)

Test: Ramp

HRI No. 46532-4 (spiked), Test 18.8: The ramp test with the ACS-TPO2A-01(spiked) source sample was performed on January 28, 1993. In the ramp test, approximately 2 kg of the source sample were charged to the reactor at ambient temperature (approximately 65°F). The test was completed one hour and 52 minutes after the sample was sealed into the reactor. The final bed temperature was 1.196°F. The overall balance closure for the run was 96.8%.

The appearance of the liquid condensate changed throughout the course of the ramp test. These changes are summarized in Table 7.

The liquid condensate first appeared when the bed temperature had reached 205°F and was clear brown in color. Two minutes later, the color remained brown but the condensate was no longer clear. When the bed temperature reached 272°F, the condensate had two layers. The top layer was a brown solution and the bottom layer appeared to be a grey sediment. This bottom layer changed to more of a tan color as the bed temperature rose to 447°F. When the bed temperature reached 478°F, the condensate had four layers. The top or first layer was light brown, the second layer was brown, the third layer was light brown, and the bottom or fourth layer was grey. When the bed temperature reached 501°F, the condensate had three layers and there was a white gas visible above the condensate. The top layer was a tan solution that appeared to decrease in volume and turn light brown in color as the bed temperature rose to 566°F. The middle layer was a brown solution that gained in volume as the bed temperature rose to 566°F. The bottom layer appeared to be dark grey solids that gained in volume as the bed temperature rose to 566°F. The white gas had disappeared when the bed temperature reached 626°F and the condensate had four layers. The top or first layer was a grey foam that gained slightly in volume and changed in color to grey and dark brown as the bed temperature rose to 853°F. The second layer was a light brown solution that gained in volume as the bed temperature rose to 853°F. The third layer was a dark brown solution that turned vellow

and appeared to decrease in volume as the bed temperature rose to \$53°F. The bottom or fourth layer appeared to be brown sediment that gained in volume as the bed temperature rose to \$53°F. When the bed temperature reached 916°F, the condensate had six layers: the top or first layer was 20 ml of grey and black particles, the second layer was 210 ml of light brown solution, the third layer was 20 ml of yellow solution, the fourth layer was 20 ml of black solution, the fifth layer was 160 ml of grey-brown solution, and the bottom or sixth layer was 520 ml of brown sediment. These layers remained unchanged for the duration of the run.

The coked product was a free-flowing material and which was easily retrieved from the reactor. The material was mostly comprised of grey to black fines. Approximately 30% of the material was in a size range of 10 mesh to one-quarter inch in diameter. There were also a few rocks up to one-half inch in diameter.

Sample:

ACS-TPO2A-01 (spiked)

Test:

Retort (30 minutes)

Temperature:

1.100°F

HRI No. 46532-4 (spiked). Test 18.9: The retort test was conducted at the specified final bed temperature of 1,100°F and total time of 30 minutes. Approximately 1 kg of silica was placed in the reactor and preheated to 1,120°F before the 1-kg sample was charged. After charging the feed material, the bed temperature fell to approximately 580°F. After five minutes, the bed temperature had reached 1067°F, the gas temperature was 313°F, and the cumulative gas volume was 0.248 acf. After ten minutes, the bed temperature reached 1132°F, the gas temperature was 258°F, the cumulative gas volume was 0.291 acf, and the gas flow was 0.0086 acf/m. After 15 minutes, the gas flow was 0.0018 acf/m. The run was terminated 30 minutes after the sample was charged to the reactor. The final bed temperature was 1093°F, the gas temperature was 144°F, the cumulative gas volume was 0.301 acf, and the gas flow was less than 0.0002 acf/m. The overall balance closure for the run was 94.1%.

There were 440 ml of condensate formed during the run. The condensate appeared to be only one layer; it was dark brown with visible suspended particles.

The coked product was a dusty free-flowing material and which was easily retrieved from the reactor. The majority of the material was sand and grey to black fine particles. Most of the sand was dark and appeared to be coated. There were some larger particles ranging in size up to one-quarter inch in diameter. There were also some grey flakes.

· Sample:

ACS-TPO2A-01 (spiked)

Test:

Retort (30 minutes)

Temperature:

1,000°F

HRI No. 46532-4 (spiked). Test 18.10: The second retort test was conducted at the specified final bed temperature of 1,000°F and total time of 30 minutes. Approximately 1 kg of silica was placed in the reactor and preheated to 1,020°F before the 1-kg sample was charged. After charging the feed material, the bed temperature fell to approximately 557°F. After three minutes the bed temperature had reached 893°F, the gas temperature was 446°F, and the cumulative gas volume was 0.285 acf. After eight minutes, the bed temperature reached 1037°F, the gas temperature was 267°F, the cumulative gas volume was 0.418 acf, and the gas flow was 0.0266 acf/m. After 18 minutes, the gas flow was 0.0012 acf/m. The run was terminated 30 minutes after the sample was charged to the reactor. The final bed temperature was 1013°F, the gas temperature was 138°F, the cumulative gas volume was 0.459 acf, and the gas flow was less than 0.0002 acf/m. The overall balance closure for the run was 99.9%.

There were 410 ml of condensate formed during the run. The condensate appeared to be only one layer; it was dark brown with visible suspended particles.

The coked product was a dusty free-flowing material and which was easily retrieved from the reactor. In general, the material was very similar in appearance to the coked product of Test 18.9.

Sample:

ACS-COOFF 02-01

Test:

Combustion

HRI No. 46532-2, Test 18.4: Approximately 500 grams each from Test 18.2 and 18.3 comprised the composite sample of coked solids used as the feed material for this combustion test. The run was complete 22 minutes after the coked solids were charged to the reactor. The overall material balance closure for the run was 98.5%.

The combusted solids were a light, ashed, pink-brown color; the silica particles were white and did not appear to be coated. The material other than the sand appeared to consist of approximately 9000 fines, and the balance of the material was approximately 50 mesh.

Sample: ACS-COOFF 03-01 (spiked)

Test: Combustion

HRI No. 46532-3 (spiked), Test 18.11: Approximately 5(x) grams each from Test 18.6 and 18.7 formed the composite sample used as feed for this combustion test. The run was complete 37 minutes after the coked solids were charged to the reactor. The overall material balance closure for the run was 97.9%.

The combusted solids were a sandy, light brown color; the silica particles were white and did not appear to be coated. The material other than the sand appeared to be greater than 90% fines and the balance of the material ranged from 10 mesh to one-half inch in diameter. The larger particles had white, brown, tan, and grey tones.

Sample: ACS-TPO2A-01 (spiked)

Test: Combustion

HRI No. 46532-4 (spiked). Test 18.12: Approximately 500 grams each from Test 18.9 and 18.10 comprised the feed material for this combustion test. The run was complete 44 minutes after the coked solids were charged to the reactor. The overall material balance for the run was 99.9%.

The combusted solids were a light orange color; the silica particles were white and did not appear to be coated. The material other than the sand appeared to be greater than 90% fines and the balance ranged from 10 mesh to one-half inch in diameter. The coloration of the larger particles included white, brown, tan, and grey tones.

PROCESS RESULTS AND PERFORMANCE DATA

The operating and material balance data recorded during the ramp run and each of the retort runs are summarized in Appendix A, Table 8, and the operating data from the combustion tests are presented in Appendix A, Table 9. The temperature and rate of gas evolution for the ramp and retort tests have been plotted as a function of time; these data are presented in Appendix B, Figures 4 through 12. Photographs of selected test products are included in Appendix C.

APPENDIX A

Tables

)

)

Particle Size Distribution of ATP Treatment Solids
ACS Site Soil Sludge

Feed A	CS-COOFF	02-01, 111	RI No. 46	532-2		Retort Combustion Product				
U.S. Sieve Size			Cum.	Wt 7	U.S. Sie	ve Size		Cum, Wt. %		
Mesh	Micron	Direct Wt. 7	Ret	Pass.	Mesh	Micron	Direct WL %	Ret	Pass	
5	4000	10.0	10.0	90.0	5	4000	2.2	2.2	97.8	
12	1700	10.6	20.6	79. 4	12	1700	3.5	5.7	94.2	
20	850	6.2	26.8	73.2	20	850	9.5	15.1	84.9	
45	355	8.5	35.3	64.7	45	355	49.9	65.0	35.0	
70	212	23.6	58.9	41.1	70	212	11.1	76.1	23.9	
100	150	17.1	76.0	24.0	100	150	11.4	87.5	12.5	
200	75	8.5	84.5	15.5	200	75	6.4	93.9	5.1	
Pan	<75	15.5	100.0	0.0	Pan	<75	6.1	100.0	0.0	
OTAL		100.0			TOTAL		0.001			

Table 2

Particle Size Distribution of ATP Treatment Solids

ACS Site Soil/Sludge

Feed AC	CS-COOFF	03-01, HR	I No. 465	532-3	Retort Combustion Product				
U.S. Sie	ve Size		Cum. V	Xt. C	U.S. Sie	ve Size		Cum. V	Vi G
Mesh	Micron	Direct Wt. %	Ret.	Pass.	Mesn	Micron	Direct Wt. %	Ret.	Pass.
5	4000	10.5	10.5	89.5	5	4000	3,4	4,4	45.6
12	1700	7.2	17.6	82,4	12	1700	3.9	3.3	41.7
20	350	4.8	22.4	77.6	20	850	9.9	18.3	31.7
45	355	6.2	28.7	71.3	45	355	49,4	57.7	32.3
70	212	19.9	48.5	51,4	7.)	212	8.7	76.3	23.7
190	150	20.5	69.2	30.8	160	150	10.8	37.2	123
200	75	14.9	34.1	15.9	2(4)	75	89	36.1	3.5
Pan	<75	15.9	[(#) ()	1313	Pan	<75	3.9	(* · *)	
TOTAL		1000			TOTAL		1.0.0		

Table 3

Particle Size Distribution of ATP Treatment Solids
 ACS Site Soil/Sludge

Feed A	ACS-TPO2.	A-01, ERI	No. 4653	12-4		Retort Cor	nbustion F	roduct	
U.S. Sie	U.S. Sieve Size		Cum.	Wt. %	U.S. Sie	ve Size		Cum.	Wt. %
Mesh	Micron	Direct Wil Sc	Ret.	Pass.	Mesh	Micron	Direct Wt. %	Ret	Pass.
5	4000	3.3	3.3	96.7	5	4000	2.3	2.3	97.7
12	1700	7.9	11.2	88.8	12	1700	3.7	6.1	93.9
20	850	6.4	17.6	82.4	· 20	850	13.0	19.1	80.9
45	355	6.0	23.5	76.5	45	355	65.1	84.2	15.8
70	212	15.3	38.8	61.2	70	212	4.6	88.7	11.3
100	150	18.2	57.0	43.0	100	150	5.1	93.9	6.1
200	75	16.6	73.6	26.4	200	75	4.9	9 8.8	1.2
Pan	<75	26.4	190.0	0.0	Рап	<75	1.2	100.0	0.0
TOTAL		100.0			TOTAL		100.0		

Table 4

Particle Size Distribution of ATP Treatment Solids
 ACS Site Soil/Sludge

Silica Sand

U.S. Sie	ve Size		Cum. '	₩t. %
Mesh	Micron	Direct Wt. %	Ret	Pass.
5	4000	0.0	0.0	100.0
12	1700	0.0	0.0	100.0
20	850	17.2	17.3	82.7
45	355	82.6	99.9	0.1
70	212	0.0	99.9	0.1
1:(#)	150	0.0	99.9	1),]
200	75	0.0	100.0	0.0
Pan	<75	<u> </u>	6.061	c.
TOTAL		100.0		

Cumulative Condensate Bed Offgas Gas Vol. Volume Temp. Temp. (ml)** (act)* Time $(^{\circ}F)$ (°F) Layer Color 0823 61 60 0830 130 68 0.2270835 190 182 0.483just visible Total milky brown 0840 204 202 0.495 20 top clear brown 200 middle cloudy 20 bottom dark brown 240 Total 20 0845 205 0.501265 top clear brown 280 middle cloudy 20 bottom dark brown 320 Total 0850 20 327 206 0.511top clear brown 340 middle cloudy 20 bottom dark brown 380 Total 0855 421 205 0,543 20 clear brown top 380 middle cloudy 20 bottom dark brown 420 Total 0905 546 176 0.630 40 10p yellow brown 380 middle cloudy yellow 20 bottom dark brown 440 Total 157 0.700 4() **W10** 510 yellow brown top 380 middle cloudy yellow 20 bottom dark brown

Time	Bed Temp. (°F)	Offgas Temp. (°F)	Cumulative Gas Vol. (acf)*	Condensate Volume (ml)**	Layer	Color
				440	Total	
0915	677	139	0.807	440	Total	unchanged
0930	831	116	1.117	460	Total	unchanged
0945	980	98	1.473	460	Total	unchanged
1000	1117	89	1.777	460	Total	unchanged
1015	1175	83	1.986	460	Total	unchanged
1030	1190	79	2.185	460	Total	unchanged
1041	1199	77	2.116	460	Total	unchanged

^{*} Actual Cubic Feet

^{**} Milliliters

Table 6 Page 1 of 3

ACS-COOFF 03-01(spiked) Ramp Test 18.5, Operator's Observations

	Bed Temp.	Offgas Temp.	Cumulative Gas Vol.	Condensate Volume	·	
Time	(°F)	(°F)	(acf)	(ml)	Layer	Color
0849	Ambient					
0900	158	73	0.311			
0905	200	199	0.486	30	Total	light brown
0910	203	205	0.493	110	Total	light brown
0915	291	213	0.498	5	top	tan
				205	bottom	brown
				210	Total	
0920	352	228	0.505	10	top	tan
				290	bottom	brown
				3(X)	Total	
0925	456	204	0.515	20	top	tan
				320	bottom	brown
				340	Total	
0930	527	189	0.540	340	Total	unchanged
0935	585	175	0.579	20	top	brown
				310	middle	It green- brown
				20	bottom	tan
				350	Total	
0940	640	161	0.642	20	top	brown
				320	middle	It green-brown
				20	bottom	tan
				360	Total	
0945	700	146	0.718	360	Total	unchanged

Time	Bed Temp. (°F)	Offgas Temp. (°F)	Cumulative Gas Vol. (acf)	Condensate Volume (ml)	Layer	Color
0950	757	138	0.785	20	top	brown
				330	middle	lt green- brown
				20	bottom	tan .
				370	Total	
0955	808	130	0.875	20	top	brown
				340	middle	lt green- brown
				20	bottom	tan
				380	Total	
1000	851	123	0.973	30	top	dk brown
				330	middle	lt green-brown
				20	bottom	tan
				380	Total	
1005	900	118	1.075	40	top	dk brown
				310	middle	lt green- brown
				40	bottom	tan
				390	Total	
1010	961	111	1.174	40	top	dk brown
				290	middle	lt green-brown
				60	bottom	tan
				390	Total	
1015	1012	106	1.275	40	top	dk brown
				270	middle	lt green- brown
				80	bottom	tan

Time	Bed Temp. (°F)	Offgas Temp. (°F)	Cumulative Gas Vol. (acf)	Condensate Volume (ml)	Layer	Color
				390	Total	
1020	1065	102	1.398	50	top	błack
				250	middle	lt green- brown
				100	bottom	tan
				400	Total	
1030	1153	97	1.609	400	Total	unchanged
1040	1195	91	1.772	400	Total	unchanged
1050	1193	85	1.849	400	Total	unchanged
1100	1202	82	1.891	400	Total	unchanged

Table 7 Page 1 of 3

ACS-TPO2A-01(spiked) Ramp Test 18.8, Operator's Observations

Time	Bed Temp. (°F)	Offgas Temp. (°F)	Cumulative Gas Vol. (acf)	Condensate Volume (ml)	Layer	Color
0823	Ambient					,
0835	216	197	0.454	60	Total	brown
0840	272	235	0.454	200	top	brown
				40	bottom	grey
				240	Total	
0845	385	198	0.454	230	top	brown
				40	bottom	tan
				270	Total	
0850	447	188	0.454	250	top	brown
				40	bottom	tan
				290	Total	
0855	478	253	0.465	40	top	lt brown
				20	top middle	brown
				200	bottom middle	light brown
				200	bottom	grey
				460	Total	
0900	501	345	0.479	220	top	tan
				80	middle	brown
				500	bottom	dark grey
				800	Total	
0905	566	282	0.492	170	top	lt brown
				100	middle	brown
				6(10)	bottom	dark grey
	,			870	Total	

Time	Bed Temp. (°F)	Offgas Temp. (°F)	Cumulative Gas Vol. (acf)	Condensate Volume (ml)	Layer	Color
0910	626	241	0.510	10	top	grey
				140	top middle	light brown
				50	bottom middle	dark brown.
				700	bottom	brown
				900	Total	
0915	688	211	0.539	10	top	grey
				170	top middle	light brown
				20	middle bottom	yellow
				720	bottom	brown
				920	Total	
0920	750	184	0.588	10	top	grey & dk brown
				160	top middle	light brown
				20	bottom middle	yellow
				740)	bottom	brown
				930)	Total	
0925	801	167	0.632	10	top	grey & dk brown
				170	top middle	light brown
				20	bottom middle	yellow
				740	bottom	brown
				वेक्स -	Total	

Time	Bed Temp. (°F)	Offgas Temp. (°F)	Cumulative Gas Vol. (acf)	Condensate Volume (ml)	Layer	Color
0930	853	150	0.698	940	Total	unchanged
0935	916	135	0.764	20	top(1)	grey & black
	•			210	(2)	lt brown
				20	(3)	yellow
				20	(4)	black
				160	(5)	grey brown
				520	bottom (6)	brown
				950	Total	
0940	972	123	0.824	950	Total	unchanged
0950	1066	105	0.918	950	Total	unchanged
1000	1144	95	0.988	950	Total	unchanged
1010	1213	88	1.048	950	Total	unchanged
1015	1196	84	1.067	950	Total	unchanged

Table 8

Ramp and Retort Test Summary

Test Number	18.1	18.2	18.3	18.5	
Date	12/13/92	12/13/92	12/13/92	1/27/93	
Test Type	Ramp	1,100° Retort	1,000° Retort	Rатр	
HRI Sample No.	46532-2	46532-2	46532-2	46532-3(s)	
Input					
Virgin Feed, g	1585.3	1165.4	1142.1	2030.8	
Silica, g	0.0	1000.0	1000.0	0.0	_
Total, g	1585.3	2165.4	2142.1	2030.8	
Output					
Produced Gas, acf	2.116	1.224	0.934	1.891	
Produced Gas, g	69.8	40.4	30.8	62.4	
Liquid Condensate, g	488.9	248.4	254.6	4 02.8	
Coked Solids, g	799.4	1864.9	1851.9	1488.3	
Total, g	1358.1	2153.7	2137.3	1953.2	
Balance Closures					
Total Input Basis, %	85.7	99.5	99.8	96.2	
Virgin Feed Basis, %	85.7	99.0	99.6	96.2	

acf = Actual cubic feet

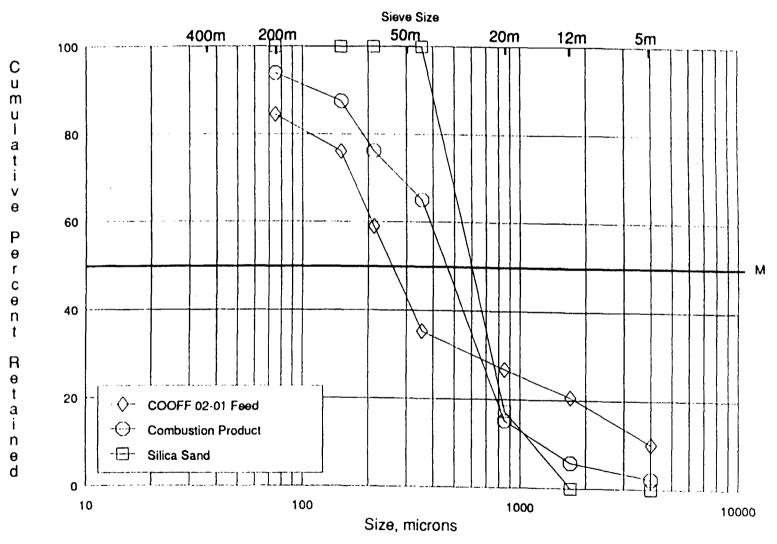
Table 8 cont.

Test Number	18.6	18.7	18.8	18.9
Date	1/27/93	1/27/93	1/28/93	1/28/93
Test Type	1,100° Retort	1,000 Retort	Ramp	1,100 Retort
HRI Sample No.	46532-3(s)	46532-3(s)	46532-4(s)	46532-4(s)
Input				
Virgin Feed, g	1163.5	1004.4	1995.9	1011.2
Silica, g	1000.0	1000.0	0.0	1000.0
Total, g	2163.5	2004.4	1995.9	2011.2
Output				
Produced Gas, acf	0.846	0.659	1.067	0.301
Produced Gas, g	27.9	21.7	35.2	9.9
Liquid Condensate, g	167.0	194.9	998.3	454.4
Coked Solids, g	1920.4	1809.6	898.2	1429.1
Total, g	2115.3	2026.2	1932.2	1893.4
Balance Closures				
Total Input Basis, %	97.8	101.1	96.8	94.1
Virgin Feed Basis, %	95.9	102.2	96.8	88.4

18.10		
1/28/93		
1,000 Retort		
46532-4(s)		
988.3		
1000.0		
1988.3		
0.459		
15.1		
439.2		
1532.7		
1987.0		
99.9		
99.9		

Table 9

Combustion Test Data


Test Number	18.4	18.11	18.12
Test Date	12/14/92	1/29/93	1/29/93
Feed Material	18.2 & 18.3 Coked Product	18.5 & 18.6 Coked Product	15.4 & 15.5 Coked Product
Retort Charge, g	1018.3	1000.0	1000.0
Run Length, minutes	22	37	44
Combusted Solids	1003.5	979.1	998.9
Offgas Volume, acf	6.276	9.628	10.527
Balance Closure, %	98.5	97.9	99.9

APENDIX B

Figures

)

Particle Size Distribution ACS Site Soil/Sludge

M = Mean Particle Size

Figure 1

Particle Size Distribution ACS Site Soil/Sludge

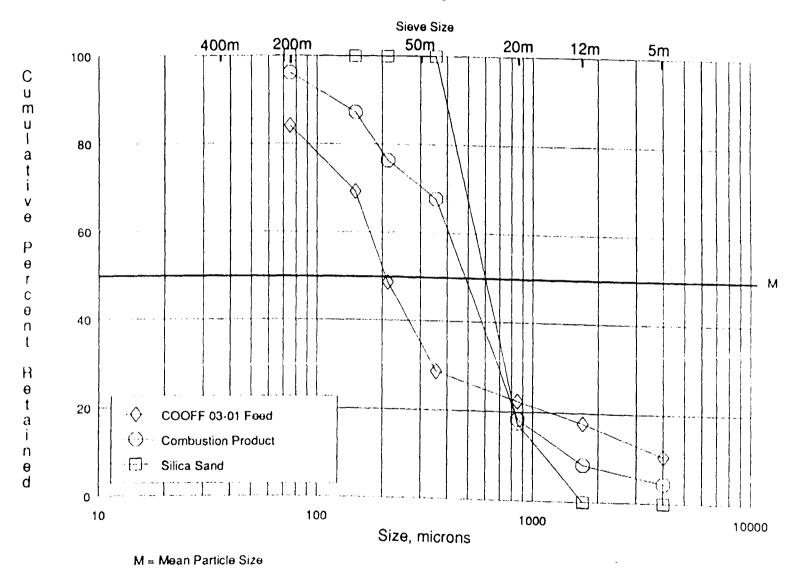
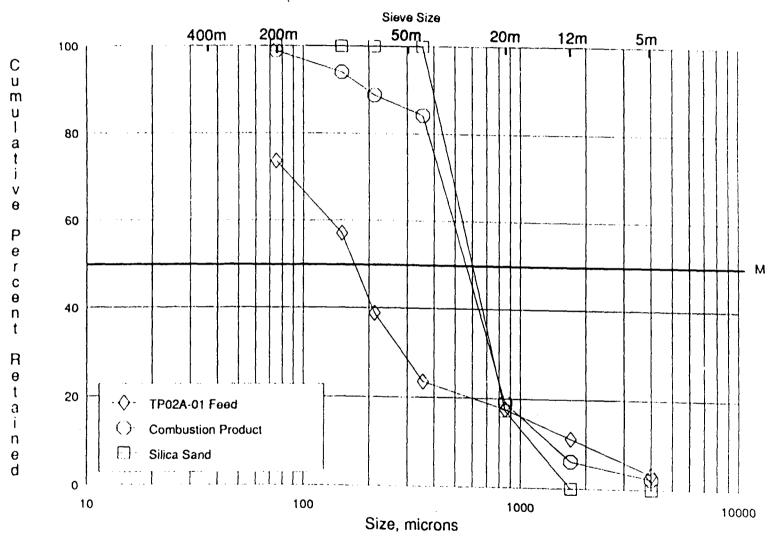
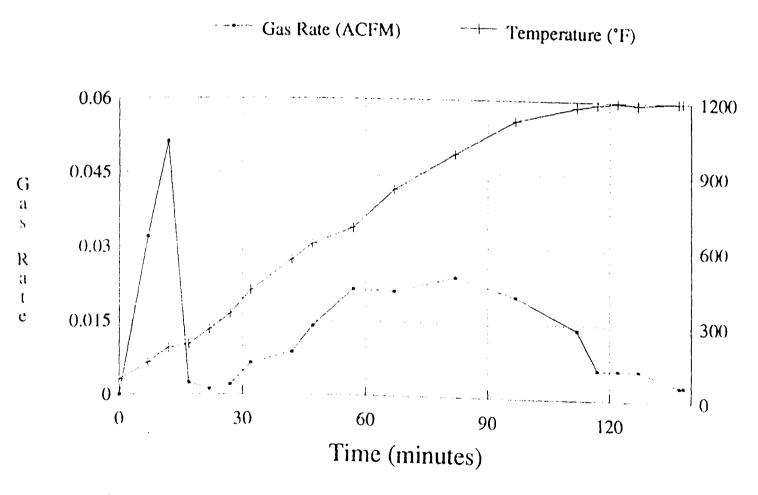



Figure 2

Mazeri Research Co.

Particle Size Distribution ACS Site Soil/Sludge



M = Moan Particle Size

Figure 3

7684-18 Run 18.1 1200°F Ramp

(Sample COOF 01-02)

Autom Barrens :

Figure 4

7684-18 Run 18.2 1100°F Retort (Sample COOF 01-02)

Gas Rate (ACFM) ——— Temperature (°F)

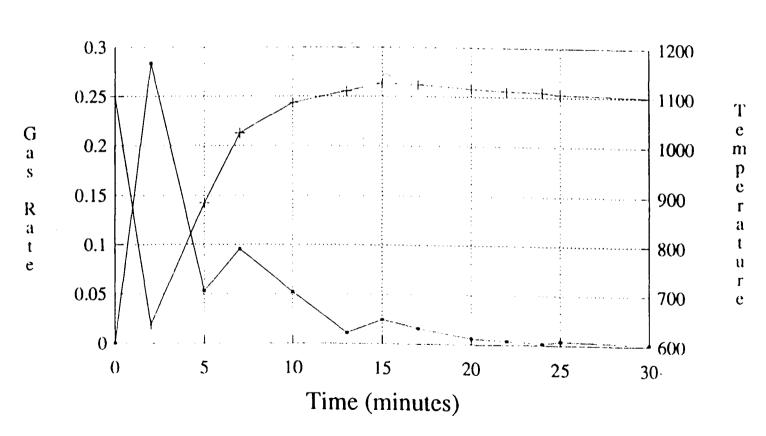
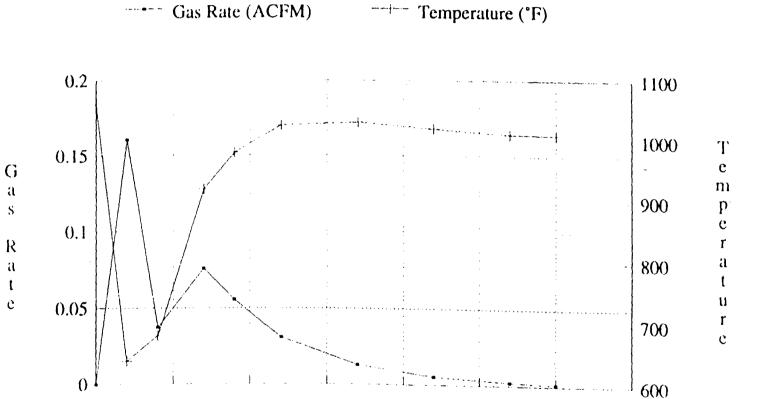



Figure 5

7684-18 Run 18.3 1000°F Retort

(Sample COOF 02-01)

20

25

30

35

a

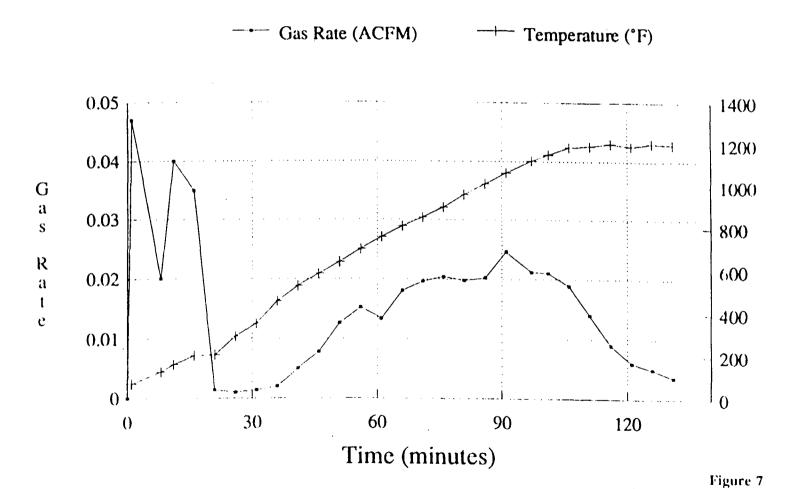
R

a

G

Figure 6

Hazen Berner & L.


Time (minutes)

15

10

5

7684-18 Run 18.5 1200°F Ramp (Sample COOF 03-01)

7684-18 Run 18.6 1100°F Retort

(Sample COOF 03-01)

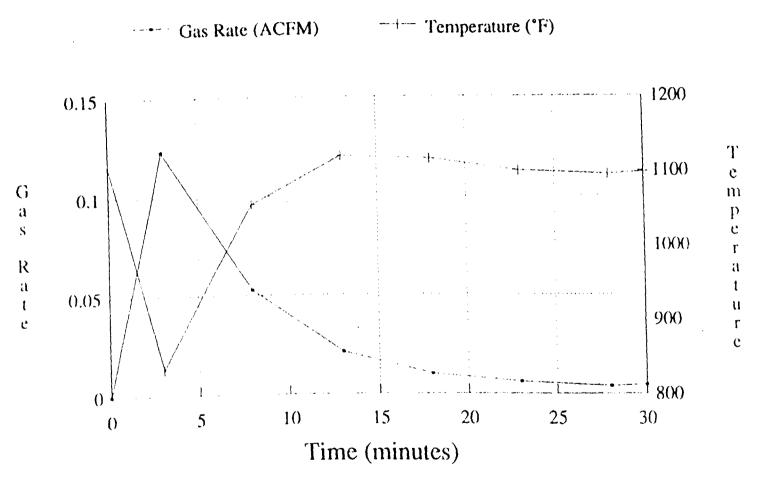
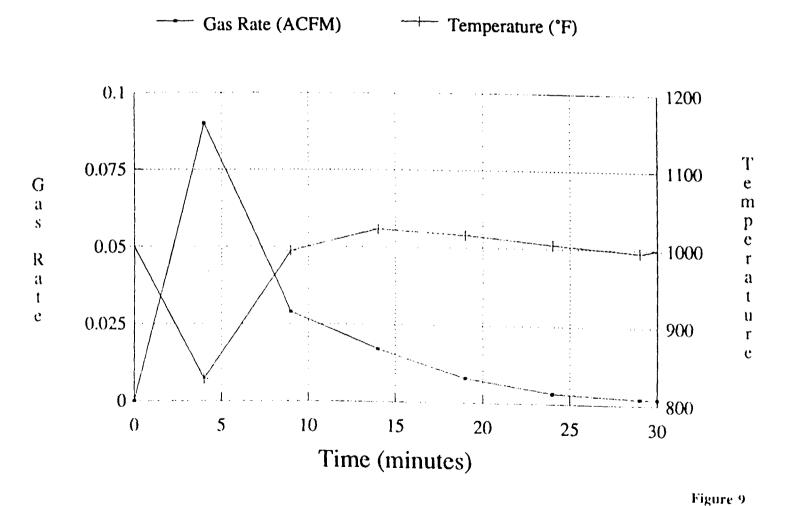
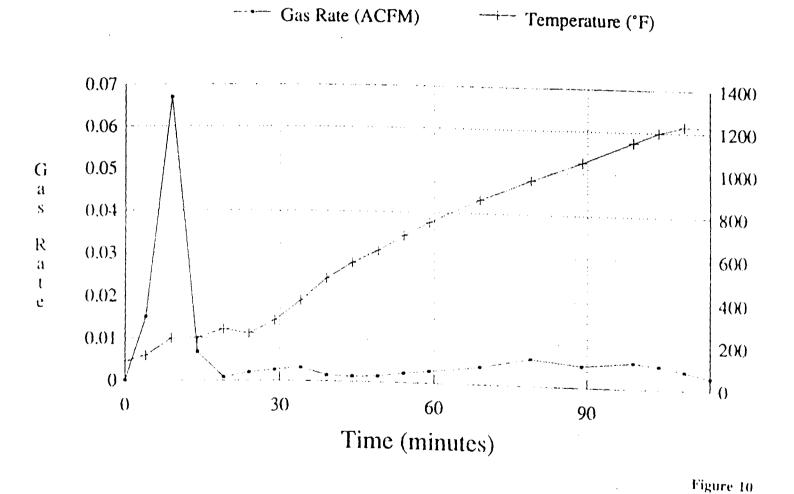



Figure 8

7684-18 Run 18.7 1000°F Retort


(Sample COOF 03-01)

Existence from Education

7684-18 Run 18.8 1200°F Ramp

(Sample TP 02A-01)

Batem Present to

7684-18 Run 18.9 1100°F Retort

(Sample TP 02A-01)

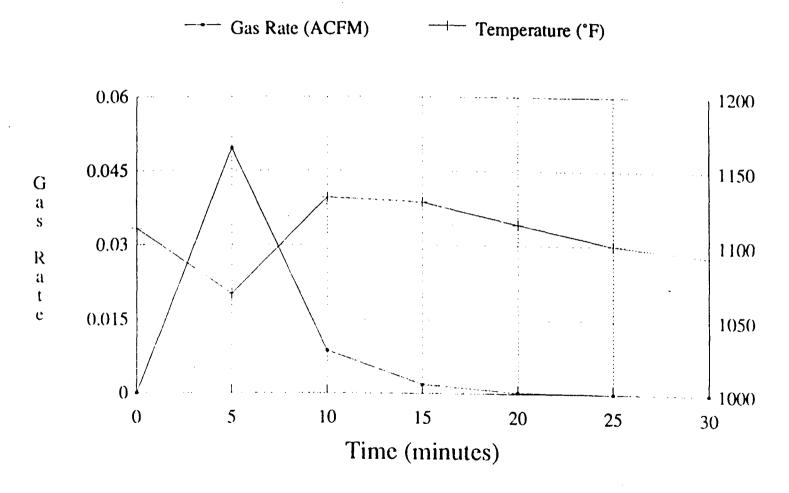
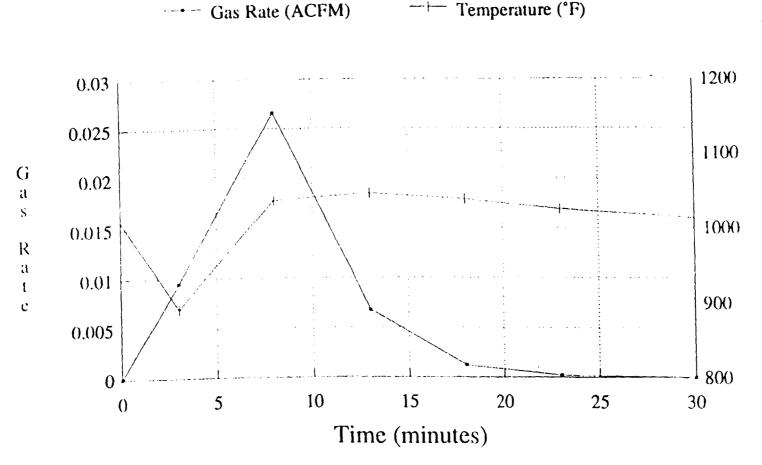



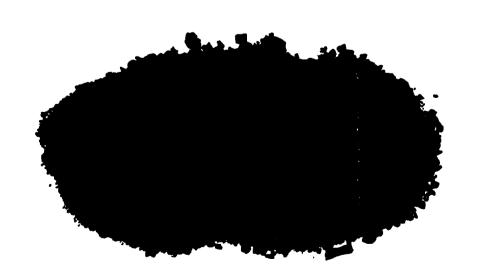
Figure 11

Theren Her variety.

7684-18 Run 18.10 1000°F Retort (Sample TP 02A-01)

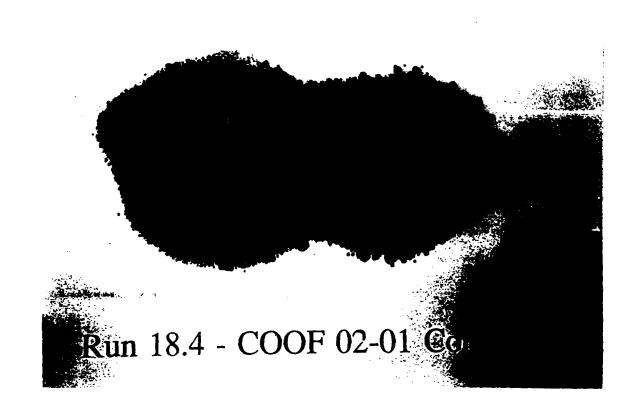
Temperature (°F)

Padders of Lorentz a


Figure 12

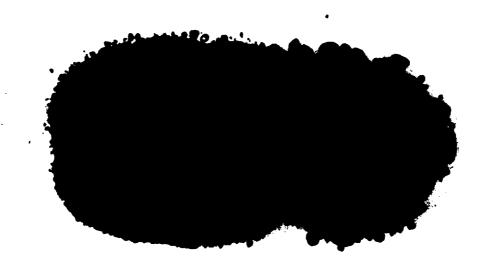
APPENDIX C

Photographs

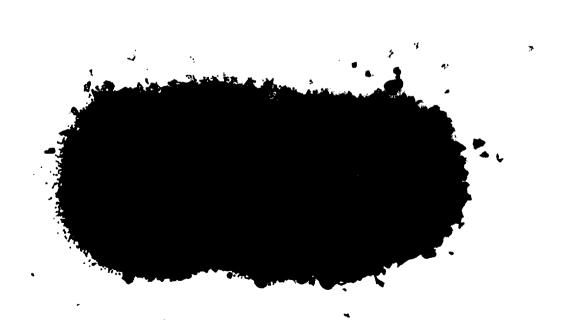

Run 18.1 - COOF ()2-01 Ramp

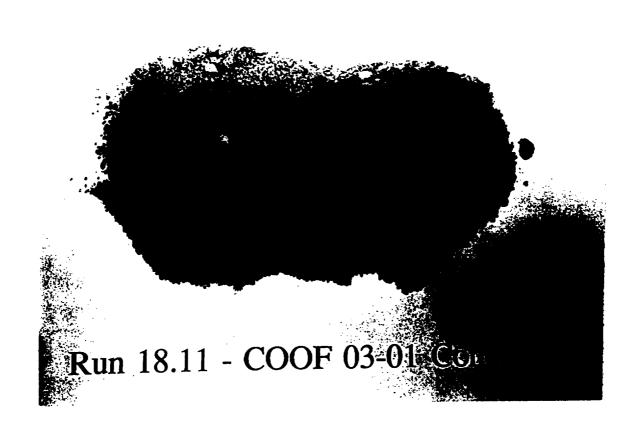
Run 18.2 - COOF 02-01 Retort 1100 F

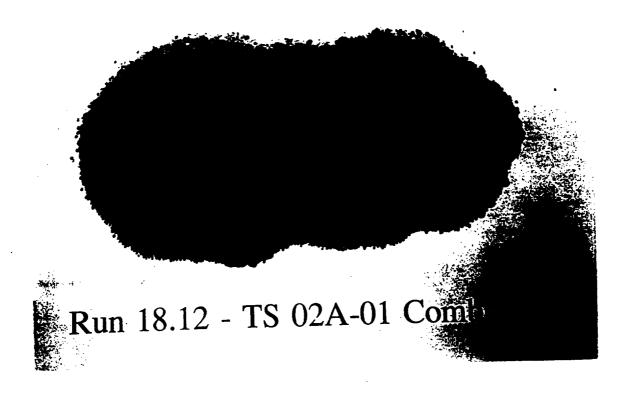
Run 18.3 - COOF 02-01 Retort 1000°F


Run 18.5 - COOF 03-01 Ramp

Run 18.6 - COOF 03-01 Retort 1100°F


Run 18.7 - COOF 03-01 Retort 1000°F


Run 18.8 - TS 02A-01 Ramp



Run 18.9 - TS 02A-01 Retort 1100°F

Run 18.1() - TS ()2 Λ -()1 Retort 1000°F

В

APPENDIX B

ATP BENCH-SCALE SYSTEM DESCRIPTION

5. Pollution Control System

The ATP Bench Unit is enshrouded by a hood and a vent system. Any vented air discharges into the laboratory hood, which is equipped with a HEPA/carbon filter. Off-gases from the processor/combustor are passed through a carbon column to remove any residual organic contaminants before discharging the gas into the laboratory hood. In the hood, the off-gas mingles with any vented air and passes through the HEPA/carbon filter before being discharged to the atmosphere. These multiple protection levels are designed and provided to totally protect public and personnel from exposure to the off-gas.

Raw Materials and Chemical

The standard bench tests use clean sand as the reactor charge, added with or before the waste feed sample. The ratio of sand to waste sample can vary widely and is used to determine target values for optimum internal recycle of coked sand in the ATP unit. In the full-scale system, the coked sand recycles from the annular region of the ATP unit back into the reaction zone. This recycle affects heat transfer and net throughput rates most strongly, and to a lesser extent, may affect pyrolysis (thermal cracking) behavior and agglomeration of solid fines into larger particles.

Some wastes have substantial amounts of sulfur and exhibit low pH values. To reduce the corrosivity of the fluids, a series of neutralization tests may be conducted on the feed material. Lime or limestone may be mixed with the sample before adding it to the processor. The acidity of product water and treated solids may be analyzed to assess the effectiveness of this neutralization.

.T. -------

•

C

.

APPENDIX C ATP BENCH-SCALE TEST PROCEDURES

APPENDIX C ATP BENCH-SCALE TEST PROCEDURES

Types of Batch Tests

Three types of tests simulating full-scale continuous operations will be conducted during a treatability study. These types of tests are identified and discussed below.

1. Ramp Test

The ramp test is so named because the temperature of a waste material is gradually increased during the test. The ramp test is the first test run on a given material. A sample of the material is introduced into the drum, and the temperature is gradually increased from ambient to a temperature at which volatilization is complete. The amount of volatilized material (condensed liquid and noncondensable gas) is measured as a function of time and temperature. The ramp test characterizes the volatility of the waste material, and identifies the temperature at which volatilization is complete. This information is used to set the initial operating conditions for the retort test, the key test for demonstrating this technology's viability. The information obtained during the ramp test is also important from a safety standpoint, particularly for samples with high hydrocarbon and/or water content.

2. Retort Test

The retort, or pyrolysis, test follows the ramp test and is the key test that demonstrates the thermal efficiency and overall viability of the SoilTech ATP Technology. This test realistically simulates the effect of full-scale process conditions. Retort tests are conducted at a constant temperature, as discussed below. Several tests may be run at different temperatures. The initial test temperature is determined by the ramp test.

APPENDIX D

TEST RESULTS

Sample Description

Laboratory ID	Client ID	<u>Type</u>	Date Received
935754-001	18.1-46532-2-S1	Soii	01/13/93
935754-002	18.2-46532-2-S2H	Soi!	01/13/93
935754-003	18.3-46532-2-S2L	Soil	01/13/93
935754-004L	18.23-46532-2-L1(O)	Waste	01, 13, 93
935754-004U	18.23-46532-2-L1(W)	Waste	01 13/93

Results and Discussion

VISTA Project # 935754

Three soil samples and two waste samples were received on January 13, 1993, for the determination of total recoverable petroleum hydrocarbons, simulated distillation, organochlorine pesticides/PCB's, volatile organic compounds, semivolatile organic compounds, oil and grease and TOC. The samples were analyzed according to the protocols described in USEPA SW-846, Test Methods for Evaluating Solid Waste, 3rd Ed. and Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-02.

Surrogate recoveries were low for the volatile analyses of sample 935754-002 (your ID 18.2-46532-2-S2H). The sample was reanalyzed with similar results indicating a sample matrix effect. Surrogate recovery for Toluene d-8 was high for sample 935754-003 (your ID 18.3-46532-2-S2L). The sample was reanalyzed with similar results, indicating a matrix interference.

Semivolatile surrogate recoveries were erratic for sample 935754-004 (your 11) 18.23-46532-2-L1). The high recoveries can be traced to matrix interferences in the sample analysis.

VISTA samples 935754-001, -002 and -003 (your ID's 18.1-46532-2-8), 18.2-46532-2-S2H and 18.3-46532-2-S2L) were analyzed for TOC by Huftman Laboratories. Their results are enclosed.

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tecn

Client Sample ID: 13.1-46532-2-S1

Sample Type: Soil

VISTA Sample ID: 935754-001 Date Sampled: 01/13/93 Date Received: 01/13/93 Date Analyzed: 01/18/93 Date Extracted: 01/18/93

Analyte	<u>Result</u>	Reporting <u>Limit</u>	<u>Units</u>
TRPH	12,000	40	mg/kg

Simulated Distillation/Total Petroleum Hydrocarbons GC/FID - ASTM D2887/CDHS Method

Client: Soil Tech

Client Sample ID: 18.1-46502-2-S1

VISTA Sample ID: 935754-001 Sample Type: Water Date Sampled : 01/13/93 Date Received: 01/15/93 Date Analyzed: 01/15

Date Received: 01/13/93 Date Analyzed: 01/15/93

Hyd	lrocarbon - Boiling Point	§ Eluting
C ₇ C ₈ C ₉ C ₁₀ C ₁₁ C ₁₂ C ₁₄ C ₁₆ C ₁₈	- 98°C - 126°C - 151°C - 174°C - 196°C - 216°C - 254°C - 287°C - 316°C - 344°C	Eluting 4 % 17 % 49 % 63 % 75 % 81 % 84 % 85 % 86 %
C ₂₀ C ₂₄ C ₂₈ C ₃₂ C ₃₆ C ₄₀ C ₄₄	- 391°C - 431°C - 466°C - 496°C - 522°C - 545°C	90 8 95 6 96 8 100 8 100 8

			<u>Result</u>	Reporting	
Total	Petroleum	Hydrocarbens	<	0.5	mg/L

Respond not detected at or above the lighted reporting light.

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.1-46532-2-81

VISTA Sample ID: 935754-001 Sample Type: Soil
Date Sampled: 01/13/93 Date Received: 01/13/93 Date Sampled: 01/13/93

Date Analyzed: 01/26/93

		Reporting	
<u>Analyte</u>	Result	<u>Limit</u>	<u>Units</u>
Chloromethane	<	200	mg/kg
Bromomethane	<	200	
Vinyl Chloride	<	200	mg/kg
Chloroethane	<	200	mg/kg
Methylene Chloride	1,500	100	mg/kg
Acetone	(110) *	2,000	mg/kg
Carbon Disulfide	(110) "	100	mg/kg
1,1-Dichloroethene	(30) *		mg/kg
1,1-Dichloroethane	100	100	mg/kg
1,2-Dichloroethenes, total	<	100	mg/kg
Chloroform	(43)*	100	mg/kg
	3,200	100	mg/kg
1,2-Dichloroethane		100	mg/kg
2-Butanone	(560)*	2,000	mg/kg
1,1,1-Trichloroethane	1,300	100	mg/kg
Carbon Tetrachloride	<	100	mg/kg
Vinyl Acetate	<<	1,000	mg/kg
Bromodichloromethane	< (27) +	100	mg/kg
1,2-Dichloropropane	(27) *	100	mg/kg
Trans-1,3-Dichloropropene	(25) *	100	mg/kg
Trichloroethene	3,700	100	mg/kg
Dibromochloromethane	(28) *	100	mg/kg
1,1,2-Trichloroethane	<	100	mg/kg
Benzene	49 C	100	mg/kg
Cis-1,3-Dichloropropene	(22)*	100	mg/kg
2-Chloroethyl Vinyl Ether	₹.	500	mg/kg
Bromoform	(28,★	100	mg/kg
4-Methyl-2-Pentanone	<	1,000	mg/kg
2-Hexanone	<	1,000	mg/kg
Tetrachloroethene	1,400	100	mg/kg
1,1,2,2-Tetrachloroethane	€′,	100	mg/kg
Toluene	0,200	100	mg/kg
Chlorobenzene	∴67, ▼	100	mg/kg
Ethylbenzene	970	100	mg/kg
Styrene	420	100	mg/ka
Mylenes, total	0,700	100	mg/kg
Surrogate Resoveries			n mark tige a garage Markett Mark tiget
Toluene-i,			
4-Bromos Norobendene	2		() 1 - 1 :
1,3-Dichloroethane-d ₄	4 .		78-117

^{*} Detected below reporting limit; quantitation may be unreliable. c = Compound not detected at or above the listed reporting limit.

Oil and Grease Gravimetric - Modified EPA Method 9070

Client: Soil Tech

Client Sample ID: 18.1-46832-2-81 VISTA Sample ID: 935754-001 Date Sampled: 01/13/93 Date Analyzed: 01/15/93 Sample Type: Soil
Date Received: 01/13/93

<u>Analyte</u>	<u>Result</u>	Reporting Limit	-	
Oil and Grease	12,000	50	mg/kg	

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech
Client Sample ID: 18.2-46532-0-80H
VISTA Sample ID: 935754-002
Date Sampled: 01/13/93
Date Received: 01/13/93
Date Analyzed: 01/18/93

		Reporting		
<u>Analyte</u>	Result	<u>Limit</u>	<u>Units</u>	
TRPH	<	40	mg/kg	

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.2-46532-2-52H

VISTA Sample ID: 935754-002

Date Sampled : 01/13/93
Date Extracted: 01/21/93

Sample Type: Soil

Date Received: 01/13/93 Date Analyzed: 01/25/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260	< < < < < < < < < < < < < < < < < < <	3 3 2 1 1 1	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg
Surrogate Recoveries			OC Limits
Dibutyl Chlorendate (DBC)	35	ક	41-140

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.2-46532-2-52H

VISTA Sample ID: 935754-002 Sample Type: Soil
Date Sampled: 01/13/93 Date Received: 01/13/93

Date Sampled: 01/13/93 Date Analyzed: 01/26/93

	7	Reporting	
Analyte	Result	<u>Limit</u>	<u>Units</u>
Chloromethane	14	10	ug/kg
Bromomethane	<	10	ug/kg .
Vinyl Chloride	<	10	ug/kg
Chloroethane	<	10	ug/kg
Methylene Chloride	190	5	ug/kg
Acetone	4400	100	ug/kg
Carbon Disulfide	12	5	ug/kg
1,1-Dichloroethene	<	5	ug/kg
1,1-Dichloroethane	8.1	5	ug/kg
1,2-Dichloroethenes, total	<	ົວ	ug/kg
Chloroform	(3.4) *	5	ug/kg
1,2-Dichloroethane	47	5	ug/kg
2-Butanone	(3.2) *	100	ug/kg
1,1,1-Trichloroethane	130	õ	u g /kg
Carbon Tetrachloride	<	Ö	ug/kg
Vinyl Acetate	<	50	ug/kg
Bromodichloromethane	<	5	ug/kg
1,2-Dichloropropane	<	5	ug/kg
Trans-1,3-Dichloropropene	7.5	õ	ug/kg
Trichloroethene	36	5 5 6 6 6	ug/kg
Dibromochloromethane	<	5	ug/kg
1,1,2-Trichloroethane	<	õ	ug/kg
Benzene	23	5	ug/kg
Cis-1,3-Dichloropropene	<		ug/kg
2-Chloroethyl Vinyl Ether	•<	10	ug/kg
Bromoform	•:	5	ug/kg
4-Methyl-2-Pentanone	<	50	ug/kg
2-Hexanone	•:	50	ug/kg
Tetrachloroethene	37	5	ug/kg
1,1,2,2-Tetrachloroethane	<	=	ug/kg
Toluene	36	5	ug/kg
Chlorobenzene	30	5	ug/kg
Ethylbenzene	24	6 6 6 6 8 8	ug/kg
Styrene	9.0	ξ	ug/kg
Xylenes, total	13	5	ug/kg
Surrogate Recoveries			oo li-its
Toluene-d ₈	39		79-100
4-Bromofluorobenzene	4.5	:	61-100
1,2-Dichloroethane- d_4	55	T	72-117

^{*} Detected below reporting limit; quantitation may be inreliable. at a Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.2-4653242-32H

VISTA Sample ID: 935754-002 Sample Type: Soil

Date Received: 01/13/93 Date Sampled : 01/13/93 Date Extracted: 01/14/93 Date Analyzed: 01/26/93

<u>Analyte</u>	Result	Reporting <u>Limit</u>	<u>Units</u>
Phenol	<	330	ug/kg
Bis(2-Chloroethyl) Ether	<	330	ug/kg
2-Chlorophenol	<	330	ug/kg
1,3-Dichlorobenzene	<	330	ug/kg
1,4-Dichlorobenzene	<	330	ug/kg
Benzyl Alcohol	<	660	ug/kg
1,2-Dichlorobenzene	<	330	ug/kg
2-Methylphenol	<	330	ug/kg
Bis(2-Chloroisopropyl) Ether	<	330	ug/kg
4-Methylphenol	<	330	ug/kg
N-Nitroso-di-n-propylamine	<	330	ug/kg
Hexachloroethane	<	330	ug/kg
Nitrobenzene	<	330	ug/kg
Isophorone	<	330	ug/kg
2-Nitrophenol	<	330	ug/kg
2,4-Dimethylphenol	<	330	ug/kg
Benzoic Acid	<	1,700	ug/kg
Bis(2-Chloroethoxy) methane	<	330	ug/kg
2,4-Dichlorophenol	<	330	ug/kg
1,2,4-Trichlorobenzene	< '	330	ug/kg
Naphthalene	<	330	ug/kg
4-Chloroaniline	<	660	ug/kg
Hexachlorobutadiene	<	330	ug/kg
4-Chloro-3-methylphenol	<	660	ug/kg
2-Methylnaphthalene	<	330	ug/kg
Hexachlorocyclopentadiene	<	330	ug/kg
2,4,6-Trichlorophenol	<	330	ug/kg
2,4,5-Trichlorophenol	<	330	ug/kg
2-Chloronaphthalene	<	330	ug/kg
2-Nitroaniline	<	1,700	ug/kg
Dimethyl Phthalate	<	330	ug/kg
Acenaphthylene	<	330	ug/kg
3-Nitroaniline	<	1,700	ug/kg
Acenaphthene		330	ug/kg
2,4-Dinitrophenol		1,700	ug/kg
4-Nitrophenol	<	1,700	ug/kg
Dibenzofuran	<	330	ug/kg
	•	5. 5	-9/159

Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270 (continued)

VISTA Sample ID: 935754-002

			
		Reporting	
Analyte	Result		<u>Units</u>
2,4-Dinitrotoluene	<	330	. ug/kg
2,6-Dinitrotoluene	<	330	ug/kg
Diethyl Phthalate	<	330	ug/ka
4-Chlorophenyl Phenyl Ether	<	330	ug/kg
Fluorene	<	330	ug/kg
4-Nitroaniline	<	1,700	ug/kg
4,6-Dinitro-2-methylphenol	<	1,700	ug/kg
N-Nitrosodiphenylamine	<	330	ug/kg
4-Bromophenyl Phenyl Ether	<	330	ug/kg
Hexachlorobenzene	<	330	ug/kg
Pentachlorophenol	<	1,700	ug/kg
Phenanthrene	<	330	ug/kg
Anthracene	<	330	ug/kg
Di-n-butyl Phthalate	<	330	ug/kg
Fluoranthene	<	330	ug/kg
Pyrene	<	330	ug/kg
Butylbenzyl Phthalate	<	330	ug/kg
3,3'-Dichlorobenzidine	<	660	ug/kg
Benzo(a)anthracene	<	330	ug/kg
Bis(2-Ethylhexyl) Phthalate	<	330	ug/kg
Chrysene	<	330	ug/kg
Di-n-octyl Phthalate	<	330	ug/kg
Benzo(b) fluoranthene	<	330	ug/kg
Benzo(k)fluoranthene	<	330	ug/kg
Benzo(a)pyrene	<	330	ug/kg
Indeno(1,2,3-cd)pyrene	<	330	ug/kg
Dibenz(a,h)anthracene	<	330	ug/kg
Benzo(g,h,i)perylene	<	330	ug/kg
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	100	ફે	35-93
2-Fluorobiphenyl	121	35	27-99
Terphenyl-d ₁₄	120	ঠ	57-109
Phenol-d ₆	69	25	26-100
2-Fluorophenol	62	ેં ₅	16 - 97
2,:,6-Tribromophenol	57	Š	10-101

< . Compound not detected at or above the listed reporting limit.

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech

Client Sample ID: 18.3-46532-2-S2L

VISTA Sample ID: 935754-003

Date Sampled: 01/13/93
Date Extracted: 01/18/93

Sample Type: Soil

Date Received: 01/13/93 Date Analyzed: 01/13/93

<u>Analyte</u>	<u>Result</u>	Reporting <u>Limit</u>	<u>Units</u>
ТРРН	<	40	mg/kg

< = Compound not detected at or above the listed reporting limit.</p>

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.3-46532-2-S2L

VISTA Sample ID: 935754-003 Sample Type: Soil

Date Sampled: 01/13/93 Date Received: 01/13/93 Date Extracted: 01/21/93 Date Analyzed: 01/25/93

<u>Analyte</u>	<u>Result</u>	Reporting <u>Limit</u>	<u>Units</u>
PCB-1016	<	3	mg/kg
PCB-1221	<	3	mg/kg
PCB-1232	<	2	mg/kg
PCB-1242	<	1	mg/kg
PCB-1248	<	1	mg/kg
PCB-1254	<	1	mg/kg
PCB-1260	<	1	mg/kg
Surrogate Recoveries			QC Limits
Dibutyl Chlorendate (DBC)	9:	Š	24-154

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.3-46533-2-82L

Date Sampled: 01/13/93 Date Analyzed: 01/26/93

VISTA Sample ID: 935754-003 Sample Type: Soil
Date Sampled: 01/13/93 Date Received: 01/13/93

		Reporting	
Analyte	Result	Limit	<u>Units</u>
Chloromethane	11	10	ug/kg
Bromomethane	<	10	ug/kg
Vinyl Chloride	<	10	ug/kg
Chloroethane	<	10	ug/kg
Methylene Chloride	290	5	ug/kg
Acetone	190	100	ug/kg
Carbon Disulfide	18	5	ug/kg
1,1-Dichloroethene	6.4	5	ug/kg
1,1-Dichloroethane	<	5	ug/kg
1,2-Dichloroethenes, total	(3.5) *	5	ug/kg
Chloroform	(3.6)*	5	ug/kg
1,2-Dichloroethane	8.4	5	ug/kg
2-Butanone	<	100	ug/kg
1,1,1-Trichloroethane	44	5	ug/kg
Carbon Tetrachloride	<	5	ug/kg
Vinyl Acetate	<	50	ug/kg
Bromodichloromethane	<	5·	ug/kg
1,2-Dichloropropane	<	5	ug/kg
Trans-1,3-Dichloropropene	<	5	ug/kg
Trichloroethene	30	5	ug/kg
Dibromochloromethane	<	5	ug/kg
1,1,2-Trichloroethane	<	5	ug/kg
Benzene	23	5	ug/kg
Cis-1,3-Dichloropropene	<	5	ug/kg
2-Chloroethyl Vinyl Ether	<	10	ug/kg
Bromoform	<	5	ug/kg
4-Methyl-2-Pentanone	<	50	ug/kg
2-Hexanone	<	50	ug/kg
Tetrachloroethene	4.5	5	ug/kg
1,1,2,2-Tetrachloroethane	<	5	ug/kg
Toluene	34	5	ug/kg
Chlorobenzene	25	5	ug/kg ug/kg
Ethylbenzene	27	5	ug/kg
Styrene	14	5	
Xylenes, total	- - 11 - <	5	ug/kg ug/ka
Ay Tenes, cocar	•	J	uy/ky
Surrogate Recoveries			<u> 20 linits</u>
Toluene-d ₈	161	1	79-127
4-Bromofluorobenzene	4.)	· 5	51-100
1,2-Dichloroethane-i,	52	2	78-117
•			_

^{*} Detected below reporting limit; quantitation may be unreliable. A compound not detected it on apove the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.3-46532-2-S21

VISTA Sample ID: 935754-003 Sample Type: Soil

Date Sampled: 01/13/93 Date Received: 01/13/93 Date Extracted: 01/14/93 Date Analyzed: 01/26/93

		Reporting	
<u>Analyte</u>	Result	Limit	Units
And Tyce	Nobale	<u> </u>	011100
Phenol	<	330	ug/kg
Bis(2-Chloroethyl) Ether	<	330	ug/kg
2-Chlorophenol	<	330	ug/kg
1,3-Dichlorobenzene	<	330	ug/kg
1,4-Dichlorobenzene	<	330	ug/kg
Benzyl Alcohol	<	660	ug/kg
1,2-Dichlorobenzene	<	330	ug/kg
2-Methylphenol	<	330	ug/kg
Bis(2-Chloroisopropyl) Ether	<	330	ug/kg
4-Methylphenol	<	330	ug/kg
N-Nitroso-di-n-propylamine	<	330	ug/kg
Hexachloroethane	<	330	ug/kg
Nitrobenzene	ζ,	330	ug/kg
Isophorone	₹	330	ug/kg
2-Nitrophenol	<	330	ug/kg
2,4-Dimethylphenol	~ ;	330	ug/kg
Benzoic Acid	* C	1,700	ug/kg
Bis(2-Chloroethoxy) methane	<	330	ug/kg
2,4-Dichlorophenol	<	330	ug/kg
1,2,4-Trichlorobenzene	< <u>'</u> ,	330	ug/kg
Naphthalene	•<	339	ug/kg
4-Chloroaniline	€,	660	ug/kg
Hexachlorobutadiene	<	330	ug/kg
4-Chloro-3-methylphenol	•*	560	ug/kg
2-Methylnaphthalene	٠.	3 3 G	ug/kg
Hexachlorocyclopentadiene	<	330	ug/kg
2,4,6-Trichlorophenol	.′.	330	ug/kg
2,4,5-Trichlorophenol	<	330	ug/kg
2-Chloronaphthalene	•	330	ug/kg
2-Nitroaniline	<.	1,700	ug/kg
Dimethyl Phthalate	•.;	330	ug/kg
Acenaphthylene	•	330	ug/kg
3-Nitroaniline	• [1,700	ug/kg
Acenaphthene	2	333	ug/kg
3,4-Dinitrophenol		1,700	ug/kg
4-Nitrophenol	•*	1,700	ug/kg
Dibensofuran		230	ug, kg

compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270 (continued)

VISTA Sample ID: 935754-003

1.514

		Reporting	
<u>Analyte</u>	Result	<u>Limit</u>	<u>Units</u>
2,4-Dinitrotoluene	<	330	ug/kg
2,6-Dinitrotoluene	<	330	ug/kg
Diethyl Phthalate	<	330	ug/kg
4-Chlorophenyl Phenyl Ether	<	330	ug/kg
Fluorene	<	330	ug/kg
4-Nitroaniline	<	1,700	ug/kg
4,6-Dinitro-2-methylphenol	<	1,700	ug/kg
N-Nitrosodiphenylamine	<	330	ug/kg
4-Bromophenyl Phenyl Ether	<	330	ug/kg
Hexachlorobenzene	<	330	ug/kg
Pentachlorophenol	<	1,700	ug/kg
Phenanthrene	<	330	ug/kg
Anthracene	<	330	ug/kg
Di-n-butyl Phthalate	<	330	ug/kg
Fluoranthene	<	330	ug/kg
Pyrene	<	330	ug/kg
Butylbenzyl Phthalate	· <	330	ug/kg
3,3'-Dichlorobenzidine	<	550	ug/kg
Benzo(a)anthracene	<	330	ug/kg
Bis(2-Ethylhexyl) Phthalate	<	330	ug/kg
Chrysene	<	330	ug/kg
Di-n-octyl Phthalate	<	330	ug/kg
Benzo(b)fluoranthene	<	330	ug/kg
Benzo(k)fluoranthene	<.	230	ug/kg
Benzo(a)pyrene	<	230	ug/kg
Indeno(1,2,3-cd)pyrene	K C	330	ug/kg
Dibenz(a,h)anthracene	<	030	ug/kg
Benzo(g,h,i)perylene	<	030	ug/kg
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	77	Š	35-93
2-Fluorobiphenyl	100	2.	27-99
Terphenyl-d ₁₄	112	8	57-109
Phenol-d ₆	75	4	25-102
2-Fluorophenol	61	:.	16-97
2,4,6-Tribromophenol	4.5	9	10-111

 $[\]ll$ = Compound not detected at or above the listed reporting limit.

Simulated Distillation/Total Petroleum Hydrocarbons GC/FID - ASTM D2887/CDHS Method

Client: Soil Tech Client Sample ID: 18.23-46532-2-L1(0)

VISTA Sample ID: 935754-004* Sample Type: Waste

Date Sampled : 01/13/93 Date Extracted: 01/15/93

Date Received: 01/13/93 Date Analyzed: 01/15/93

Нус	rocarbon - Boiling Point	<pre>% Eluting</pre>
C ₇ C ₈ C ₉	- 98°C	4 %
$C_{\mathbf{g}}$	- 126°C	19 ક
C.	- 151°C	52 %
C_{10}	- 174°C	68 %
C_{11}	- 196°C	80 %
C ₁₂	- 216°C	87 %
C ₁₄	- 254°C	92 %
C ₁₆	- 287°C	94 %
C ₁₈	- 316°C	95 %
C ₂₀	- 344°C	96 %
C ₂₄	- 391°C	98 %
C ₂₈	- 431°C	99 %
C ₃₂	- 466°C	99 %
C ₃₆	- 496°C	100 용
C ₄₀	- 522°C	100 %
C ₄₄	- 545°C	100 3

	Result	Reporting <u>Limit</u>	<u>Units</u>
Total Petroleum Hydrocarbons	<	0.5	mg/L

^{*} Lower Phase

< = Compound not detected at or above the listed reporting limit.</p>

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.23-46532-2-L1(W)

Sample Type: Waste

VISTA Sample ID: 935754-004*
Date Sampled: 01/13/93 Date Extracted: 01/21/93

Date Received: 01/13/93 Date Analyzed: 01/26/93

<u>Analyte</u>	Result	Reporting Limit	<u>Units</u>
PCB-1016	<	300	mg/kq
PCB-1221	<	300	mg/kg
PCB-1232	<	200	mg/kg
PCB-1242	<	100	mg/kg
PCB-1248	3,700	100	mg/kg
PCB-1254	1,200	100	mg/kg
PCB-1260	<	100	mg/kg
Surrogate Recoveries			QC Limits
Dibutyl Chlorendate (DBC)	D	? ;	24-154

^{*} Upper Phase

D = Diluted Out

< = Compound not detected at or above the listed reporting limit.

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 13.23-46532-2-L1(0)

VISTA Sample ID: 935754-004* Sample Type: Waste Date Sampled: 01/13/93 Date Extracted: 01/21/93 Date Analyzed: 01/26/93

<u>Analyte</u>	Result	Reporting <u>Limit</u>	<u>Units</u>
PCB-1016	<	3	mg/kg
PCB-1221	<	3	mg/kg
PCB-1232	<	2	mg/kg
PCB-1242	<	1	mg/kg
PCB-1248	<	1	mg/kg
PCB-1254	<	1	mg/kg
PCB-1260	<	1	mg/kg
Surrogate Recoveries			QC Limits
Dibutyl Chlorendate (DBC)	27	· :	24-154

^{*} Lower Phase

< = Compound not detected at or move the listed reporting limit.

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.23-46532-2-L1(W)

VISTA Sample ID: 935754-004* Sample Type: Waste

Date Sampled: 01/13/93 Date Received: 01/13/93

Date Analyzed: 01/26/93

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
Chloromethane	<	1,000	mg/kg
Bromomethane	<	1,000	mg/kg
Vinyl Chloride	<	1,000	mg/kg
Chloroethane	<	1,000	mg/kg
Methylene Chloride	16,000	500	mg/kg
Acetone	(910) **	10,000	mg/kg
Carbon Disulfide	<	500	mg/kg
1,1-Dichloroethene	710	500	mg/kg
1,1-Dichloroethane	1,400	500	mg/kg
1,2-Dichloroethenes, total	(140) **	500	mg/kg
Chloroform	<	500	mg/kg
1,2-Dichloroethane	67,000	500	mg/kg
2-Butanone	(3,600)**	10,000	mg/kg
1,1,1-Trichloroethane	3,000	500	mg/kg
Carbon Tetrachloride	<	500	mg/kg
Vinyl Acetate	<	5,000	mg/kg
Bromodichloromethane	<	500	mg/kg
1,2-Dichloropropane		500	mg/kg
Trans-1,3-Dichloropropene	<	500	mg/kg
Trichloroethene	95,000	500	mg/kg
Dibromochloromethane	55, 500	500	mg/kg
1,1,2-Trichloroethane	<	500	mg/kg
Benzene	10,000	500	mg/kg
Cis-1,3-Dichloropropene	<	500	mg/kg
2-Chloroethyl Vinyl Ether	<	1,000	mg/kg
Bromoform	<u>`</u>	500	mg/kg
4-Methyl-2-Pentanone	11,000	5,000	mg/kg
2-Hexanone	<	5,000 5,000	mg/kg
Tetrachloroethene	26,000	500	mg/kg
1,1,2,2-Tetrachloroethane	<	500	mg/kg
Toluene	54,000	500	mg/kg mg/kg
Chlorobenzene	34,300 <	500	mg/kg
Ethylbenzene	13,000	500	mg/kg
Styrene	11,000	500	mg/kg
Xylenes, total	87,000	500 500	
xylenes, cocal	87,000	570	mg/kg
Surrogate Recoveries			<u>QC Limits</u>
Toluene-d ₈	194	· ·	66-131
4-Bromofluorobenzene	95	•	55-134
1,2-Dichloroethane-d4	94	Ą	59-107

^{*} Upper Phase

^{**} Detected below reporting limit; quantitation may be unreliable.

c = Compound not detected at or above the listed reporting limit.

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.23-46532-2-L1(0)

VISTA Sample ID: 935754-004* Sample Type: Waste Date Sampled: 01/13/93 Date Received: 01/13/93

Date Analyzed: 01/27/93

			•
		Reporting	Υ
<u>Analyte</u>	Result	Limit	<u>Units</u>
			3,,1,00
Chloromethane	<	1,000	mg/kg
Bromomethane	<	1,000	mg/kg
Vinyl Chloride	<	1,000	mg/kg
Chloroethane	<	1,000	mg/kg
Methylene Chloride	810	500	mg/kg
Acetone	(1,300) **	10,000	mg/kg
Carbon Disulfide	<	500	mg/kg
1,1-Dichloroethene	(290) **	500	mg/kg
1,1-Dichloroethane	(120) **	500	mg/kg
1,2-Dichloroethenes, total	(120) **	500	mg/kg
Chloroform	(150)**	500	mg/kg
1,2-Dichloroethane	1,700	500	mg/kg
2-Butanone	(3,300)**	10,000	mg/kg
1,1,1-Trichloroethane	10,000	5 0 0	mg/kg
Carbon Tetrachloride	<	500	mg/kg
Vinyl Acetate	<	5,000	mg/kg
Bromodichloromethane	(160) **	500	mg/kg
1,2-Dichloropropane	(190) **	500	mg/kg
Trans-1,3-Dichloropropene	(180) **	500	mg/kg
Trichloroethene	1,200	500	mg/kg
Dibromochloromethane	(160) **	500	mg/kg
1,1,2-Trichloroethane	(220) **	500	mg/kg
Benzene	640	500	mg/kg
Cis-1,3-Dichloropropene	(170) **	500	mg/kg
2-Chloroethyl Vinyl Ether	(170) **	1,000	mg/kg
Bromoform	(130) **	500	mg/kg
4-Methyl-2-Pentanone	(1,000) **	5,000	mg/kg
2-Hexanone	<	5,900	mg/kg
Tetrachloroethene	670	500	mg/kg
1,1,2,2-Tetrachloroethane	(360) **	500	mg/kg
Toluene	1,300	500	mg/kg
Chlorobenzene	<	500	mg/kg
Ethylbenzene	720	500	mg/kg
Styrene	550	500	mg/kg
Xylenes, total	1,900	500	mg/kg
Surrogate Recoveries			QC Limits
Toluene-d _g	110	- -	66-130
4-Bromofluorobenzene	7.5	}	66-134
1,3-Dichloroethane-d4	9.6		59-127
·			

Lower Phase

^{**} Detected below reporting limit; quantitation may be unreliable. Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.23-46532-2-L1(W)

. . . .

VISTA Sample ID: 935754-004* Sample Type: Waste

Date Sampled: 01/13/93
Date Extracted: 01/14/93
Date Extracted: 01/14/93
Date Analyzed: 01/26/93

<u>Analyte</u>	Result	Reporting <u>Limit</u>	<u>Units</u>
Phenol	7,800	100	mg/kg
Bis(2-Chloroethyl) Ether	<	100	mg/kg
2-Chlorophenol	<	100	mg/kg
1,3-Dichlorobenzene	<	100	mg/kg
1,4-Dichlorobenzene	<	100	mg/kg
Benzyl Alcohol	<	200	mg/kg
1,2-Dichlorobenzene	200	100	mg/kg
2-Methylphenol	1,400	100	mg/kg
Bis(2-Chloroisopropyl) Ether	<	100	mg/kg
4-Methylphenol	1,000	100	mg/kg
N-Nitroso-di-n-propylamine	. <	100	mg/kg
Hexachloroethane	•<	100	mg/kg
Nitrobenzene		100	mg/kg
Isophorone	3,300	100	mg/kg
2-Nitrophenol	<	100	mg/kg
2,4-Dimethylphenol	1,100	100	mg/kg
Benzoic Acid	4,000	500	mg/kg
Bis(2-Chloroethoxy) methane	< <	100	mg/kg
2,4-Dichlorophenol	<	100	mg/kg
1,2,4-Trichlorobenzene	•	100	mg/kg
Naphthalene	5,200	100	mg/kg
4-Chloroaniline	1,600	200	mg/kg
Hexachlorobutadiene	1,300	100	mg/kg
4-Chloro-3-methylphenol	<	200	mg/kg
2-Methylnaphthalene	1,300	100	mg/ka
Hexachlorocyclopentadiene	1,400	100	mg/kg
2,4,6-Trichlorophenol	<	100	mg/kg
2,4,5-Trichlorophenol	<	100	mg/kg
2-Chloronaphthalene	<	100	mg/kg
2-Nitroaniline	<;	500	mg/kg
Dimethyl Phthalate	130	100	mg/kg
Acenaphthylene	•*	100	mg/kg
3-Nitroaniline	€,	500	mg/kg
Acenaphthene	(80)**	100	mg/kg
2,4-Dinitrophenol	4	500	mg/ka
4-Nitrophenol	••	530	mg/kg
Dibenzofuran	(49) **	155	mg/kg

^{*} Upper Phase

^{**} Detected below reporting limit; quantitation may be unreliable. < = Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270 ranntinged

VISTA Sample ID: 935754-004*

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	100	mg/kg
2,6-Dinitrotoluene	<	100	mg/kg
Diethyl Phthalate	<	100	mg/kg
4-Chlorophenyl Phenyl Ether	<	100	mg/kg .
Fluorene	120	100	mg/kg
4-Nitroaniline	<	500	mg/kg
4,6-Dinitro-2-methylphenol	<	500	mg/kg
N-Nitrosodiphenylamine	<	100	mg/kg
4-Bromophenyl Phenyl Ether	<	100	mg/kg
Hexachlorobenzene	(67) **	100	mg/kg
Pentachlorophenol	<	500	mg/kg
Phenanthrene	150	100	mg/kg
Anthracene	(52) **	100	mg/kg
Di-n-butyl Phthalate	570	100	mg/kg
Fluoranthene	<	100	mg/kg
Pyrene	(44) **	100	mg/kg
Butylbenzyl Phthalate	240	100	mg/kg
3,3'-Dichlorobenzidine	<	200	mg/kg
Benzo(a)anthracene	(13) **	100	mg/kg
Bis(2-Ethylhexyl) Phthalate	1,100	100	mg/kg
Chrysene	(22) **	100	mg/kg
Di-n-octyl Phthalate	(16)**	100	mg/kg
Benzo(b)fluoranthene	(17) **	100	mg/kg
Benzo(k)fluoranthene	x '	100	ng/kg
Benzo(a)pyrene	<.	100	mg/kg
<pre>Indeno(1,2,3-cd)pyrene</pre>	er.	100	mg/kg
Dibenz(a,h)anthracene	<,′	100	mg/kg
Benzo(g,h,i)perylene	٧.	100	mg/kg
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	267 3		32-118
2-Fluorobiphenyl	97 3		27-114
Terphenyl-d ₁₄	97 3		44-101
Phenol-d ₆	175 3		00-121
2-Fluorophenol	45 3		10-141
2,4,6-Tribromophenol	50 °		15-126

^{*} Upper Phase

^{**} Detected below reporting limit: pushtitation may be unreliable. - Compound not detected at or scove the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 13.23-46532-2-L1(0)

VISTA Sample ID: 935754-004* Sample Type: Waste

Date Sampled: 01/13/93 Date Received: 01/13/93
Date Extracted: 01/14/93 Date Analyzed: 01/26/93

		Reporting	
<u>Analyte</u>	Result	<u>Limit</u>	<u>Units</u>
Phenol	1,300	100	mg/kg
Bis(2-Chloroethyl) Ether	<	100	mg/kg
2-Chlorophenol	<	100	mg/kg
1,3-Dichlorobenzene	<	100	mg/kg
1,4-Dichlorobenzene	<	100	mg/kg
Benzyl Alcohol	(68) **	200	mg/kg
1,2-Dichlorobenzene	<	100	mg/kg
2-Methylphenol	(36) **	100	mg/kg
Bis(2-Chloroisopropyl) Ether	.` <′	100	mg/kg
4-Methylphenol	(33) **	100	mg/kg
N-Nitroso-di-n-propylamine	` < '	100	mg/kg
Hexachloroethane	<	100	mg/kg
Nitrobenzene	<	100	mg/kg
Isophorone	(27) **	100	mg/kg
2-Nitrophenol	· <	100	mg/kg
2,4-Dimethylphenol	<	100	mg/kg
Benzoic Acid	(170) **	500	mg/kg
Bis(2-Chloroethoxy) methane	<	100	mg/kg
2,4-Dichlorophenol	<	100	mg/kg
1,2,4-Trichlorobenzene	<	100	mg/kg
Naphthalene	<	100	mg/kg
4-Chloroaniline	<	200	mg/kg
Hexachlorobutadiene	<	100	mg/kg
4-Chloro-3-methylphenol	<	200	mg/kg
2-Methylnaphthalene	<	100	mg/kg
Hexachlorocyclopentadiene	<	100	mg/kg
2,4,6-Trichlorophenol	<	100	mg/kg
2,4,5-Trichlorophenol	<	100	mg/kg
2-Chloronaphthalene	<	100	mg/kg
2-Nitroaniline	<	500	mg/kg
Dimethyl Phthalate	<	100	mg/kg
Acenaphthylene	<	100	mg/kg
3-Nitroaniline	<	500	mg/kg
Acenaphthene	<	100	mg/kg
2,4-Dinitrophenol	<	500	mg/kg
4-Nitrophenol	<	500	mg/kg
Dibenzofuran	<	100	mg/kg

^{*} Lower Phase

^{**} Detected below reporting limit; quantitation may be unreliable.

< = Compound not detected at or above the listed reporting limit.</p>

Semivolatile Organic Compounds - EPA Method 8270 (continued)

VISTA Sample ID: 935754-004*

			
		Reporting	7
<u>Analyte</u>	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	100	mg/kg
2,6-Dinitrotoluene	<	100	mg/kg
Diethyl Phthalate	<	100	mg/kg
4-Chlorophenyl Phenyl Ether	<	100	mg/kg
Fluorene	<	100	mg/kg
4-Nitroaniline	<	500	mg/kg
4,6-Dinitro-2-methylphenol	<	500	mg/kg
N-Nitrosodiphenylamine	<	100	mg/kg
4-Bromophenyl Phenyl Ether	<	100	mg/kg
Hexachlorobenzene	<	100	mg/kg
Pentachlorophenol	<	500	mg/kg
Phenanthrene	<	100	mg/kg
Anthracene	<	100	mg/kg
Di-n-butyl Phthalate	<	100	mg/kg
Fluoranthene	<	100	mg/kg
Pyrene	<	100	mg/kg
Butylbenzyl Phthalate	<	100	mg/kg
3,3'-Dichlorobenzidine	*\$	200	mg/kg
Benzo(a) anthracene	<	100	mg/kg
Bis(2-Ethylhexyl) Phthalate	<	100	mg/kg
Chrysene	<	100	mg/kg
Di-n-octyl Phthalate	<	100	mg/kg
Benzo(b) fluoranthene	<	100	mg/kg
Benzo(k) fluoranthene	<.	100	mg/kg
Benzo(a) pyrene	<	100	mg/kg
Indeno(1,2,3-cd)pyrene	<	100	mg/kg
Dibenz(a,h)anthracene	<	100	mg/kg
Benzo(g,h,i)perylene	•;	100	mg/kg
(3,,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,			9/1.9
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	57 3	į,	32-118
2-Fluorobiphenyl	145	:	27-114
Terphenyl-d ₁₄	1 05	•	44-131
Phenol-d ₆	106 99 96		32-121
2-Fluorophenol		:	10-141
2,4,6-Tribromophenol	90	÷	15-12-5

^{*} Lower Phase

Compound not detected at or above the listed reporting limit.

QUALITY ASSURANCE

Total Recoverable Petroleum Hydrocarbons EPA Method 416.1

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-Blank

Date Sampled : NA

Date Extracted: 01/18/93

Sample Type: Soil Date Received: NA

Date Analyzed: 01/18/93

Analyta		Reporting Limit	Unit.
<u>Analyte</u>	resurc	<u> 11.:11</u>	<u> </u>
TRPH	<	40	mg/kg

Quality Assurance Total Recoverable Petroleum Hydrocarbons - EPA Method 418.1 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-BLSP

Date Sampled : NA

Date Extracted: 01/18/93

Sample Type: Soil Date Received: NA

Date Analyzed: 01/18/93

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (ma/ka)	MS % Rec	QC Límits <u>% Rec</u>
TRPH	250	ИD	194	78	75-125
Compound	Spike Added (mg/kg)	MSD Conc. (mg/kg)	MSD 응 Rec	<u>RPD</u>	QC Limits RPD & Reg
TRPH	250	194	7.3	0	15 75-100

NA = Not Applicable ND = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-Blank

Date Sampled : NA

Date Extracted: 01/21/93

Sample Type: Soil Date Received: NA

Date Analyzed: 01/22/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
PCB-1016	<	3	mg/kg
PCB-1221	<	3	mg/kg
PCB-1232	<	2	mg/kg
PCB-1242	<	1	mg/kg
PCB-1248	<	1	mg/kg
PCB-1254	<	1	mg/kg
PCB-1260	<	1	mg/kg
Surrogate Recoveries			QC Limits
Dibutyl Chlorendate (DBC)	115	3	24-15:

NA \approx Not Applicable is a Compound not detected at or above the listed reporting limit.

Quality Assurance Organochlorine Pesticides - Method 8080 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-BLSP

Date Sampled : NA

Date Extracted: 01/21/93

Sample Type: Soil Date Received: NA

Date Analyzed: 01/22/93

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS % Rec	QC Limits % Rec
gamma-BHC (Lindane)	0.2	ND	0.191	96	36-122
Heptachlor	0.2	ND	0.183	92	42-126
Aldrin	0.2	ND	0.154	77	39-117
Dieldrin	0.5	ND	0.472	94	43-105
Endrin	0.5	ND	0.469	94	35-136
4,4'-DDT	0.5	иD	0.371	74	22-146

Compound	Spike Added (mg/kg)	MSD Conc. (mg/kg)	MSD 등 Rec	<u>RPD</u>		C its <u>}</u> Res
COMPOUNT	97591	1.11977.97	3 1100	NI D	-71- 12	
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	0.2 0.2 0.5 0.5	0.197 0.186 0.158 0.483 0.478 0.378	9339766	3 1 3 3 3	12 13 12 26 22	36-120 42-100 09-117 43-100 05-130 02-140

NA = Not Applicable

MD = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-Blank

Date Sampled: NA

Date Analyzed: 01/26/93

Sample Type: Water Date Received: NA

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
Chloromethane	<	10	ug/L
Bromomethane	<	10	ug/L
Vinyl Chloride	<	10	ug/L
Chloroethane	<	10	ug/L
Methylene Chloride	<	5	ug/L
Acetone	(4.6)*	100	ug/L
Carbon Disulfide	<	5	ug/L
1,1-Dichloroethene	<	5	ug/L
1,1-Dichloroethane	<	5	ug/L
1,2-Dichloroethenes, total	<	5	ug/L
Chloroform	<	5	ug/L
1,2-Dichloroethane	<.	5	ug/L
2-Butanone	<	100	ug/L
1,1,1-Trichloroethane	< ,	5	ug/L
Carbon Tetrachloride	•.	5	ug/L
Vinyl Acetate	• •	50	ug/L
Bromodichloromethane	<<	5	ug/L
1,2-Dichloropropane	• .	5	ug/L
Trans-1,3-Dichloropropene	<.	5	ug/L
Trichloroethene	* 1	5	ug/L
Dibromochloromethane	-1	5	ug/L
1,1,2-Trichloroethane	ď	5	ug/L
Benzene	•	ā	ug/L
Cis-1,3-Dichloropropene	• *	Ē	ug/L
2-Chloroethyl Vinyl Ether	• ;	10	ug/L
Bromoform	* \$	5	ug/L
4-Methyl-2-Pentanone	4	5.0	ug/L
2-Hexanone	<	50	ug/L
Tetrachloroethene	<	5	ug/L
1,1,2,2-Tetrachloroethane	4,	5	ug/L
Toluene	+2	5	ug/L
Chlorobenzene		5	ug, L
Ethylbenzene	. *	(O) (O) (O) (O)	ug/L
Styrene		5	นตู้/โ.
Xylenes, total	٠.	5	ug) L
Surrogate Recoveries			<u>oo limita</u>
Toluene-d _a	(C	5	21-103
4-Bromofluorobenzene	2 F	`.	76-117
1.3-Dichloroethame-d4	9.3	5	77-111

 $[\]star$ Detected below reporting limit; quantitation may be unreliable. NA $\ =\ \text{Not Applicable}$

conpound not detected at or above the listed reporting times.

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-Blank

Date Sampled : NA

Date Analyzed: 01/27/93

Sample Type: Water Date Received: NA

		Reporting		
<u>Analyte</u>	Result	<u>Limit</u>	<u> Units</u>	
Chloromethane	<	10	ug/L	
Bromomethane	<	10	ug/L	
Vinyl Chloride	<	10	ug/L	
Chloroethane	<	10	ug/L	
Methylene Chloride	<	5	ug/L	
Acetone	(7.0)*	100	ug/L	
Carbon Disulfide	<	• 5	ug/L	
1,1-Dichloroethene	<	5	ug/L	
1,1-Dichloroethane	<	5	ug/L	
1,2-Dichloroethenes, total	<	5	ug/L	
Chloroform	<	5	ug/L	
1,2-Dichloroethane	<	5	ug/L	
2-Butanone	<	100	ug/L	
1,1,1-Trichloroethane	<	5	ug/L	
Carbon Tetrachloride	<	5	ug/L	
Vinyl Acetate	<	50	ug/L	
Bromodichloromethane	<	5	ug/L	
1,2-Dichloropropane	<	5	ug/L	
Trans-1,3-Dichloropropene	<	5	ug/L	
Trichloroethene	<	5	ug/L	
Dibromochloromethane	<	5	ug/L	
1,1,2-Trichloroethane	<	5	ug/L	
Benzene	<	5	ug/L	
Cis-1,3-Dichloropropene	<	5	ug/L	
2-Chloroethyl Vinyl Ether	<	10	ug/L	
Bromoform	<	5	ug/L	
4-Methyl-2-Pentanone	<	5 3	ug/L	
2-Hexanone	<	50	ug/L	
Tetrachloroethene	<	5	ug/L	
1,1,2,2-Tetrachloroethane	<	ε	ug/L	
Toluene	<	5	ug/L	
Chlorobenzene	<	5	ug/L	
Ethylbenzene	<	5	ug/L	
Styrene	<:	ŝ	ug, L	
Xylenes, total	<	Ē	ug/L	
•		-		
Surrogate Recoveries			22 11-1-3	
Toluene-d ₈	104	ş.	81~129	
4-Bromofluorobenzene	94		742119	
1,2-Dichloroethane-d,	95	:.		
-,	. .	•	J	

NA = Not Applicable

^{*} Detected below reporting limit; quantitation may be unreliable. < Compound not detected it or above the listed reporting limit.

Quality Assurance Volatile Organics - EPA Method 6240 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-BLSP

Date Sampled : NA

Date Analyzed: 01/26/93

Sample Type: Water Date Received: NA

Compound	Spike Added (ug/L)	Sample Conc. (ug/L)	MS Conc. (ug/L)		QC Limits % Rec
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	50 50 50 50 50	ND ND ND ND	45.4 50.2 46.9 49.6 43.5	91 100 94 99 87	60-113 88-111 36-115 84-117 87-110
Compound	Spike Added (ug/L)		MSD <u>- Rec</u>	<u> </u>	QC Limito REQ <u>A RA</u> A
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	50 50 50 50 50	42.9 50.7 40.1 40.5 44.4	86 101 99 94	5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 50-11 6 86-111 6 86-11 7 84-11 6 90-11.

NA = Not Applicable ND = Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Differency

Quality Assurance Volatile Organics - EPA Method 6240 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-BLSP

Date Sampled : NA

Date Analyzed: 01/27/93

Sample Type: Water Date Received: NA

Compound	Spike Added (ug/L)	Sample Conc. (ug/L)	MS Conc. (ug/L)	_	QC Limits <u>% Rec</u>
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	50 50 50 50 50	ND ND ND ND	50.3 54.7 43.2 54.6 44.2	101 109 86 109 83	60-113 88-111 86-115 84-117 87-110
Compound	Spike Added (ug/L)	MSD Conc. (ug/L)	MSD <u>& Rec</u>	<u> 585</u>	QC Limits <u>RPD & Pas</u>
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	50 50 50 50 50	51.9 59.3 41.6 55.8 45.9	104 119 83 110 90	3 9 :	10 60-110 6 88-111 5 86-115 7 84-11 1 37-11

NA = Not Applicable ND = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-Blank Sample Type: Soil Date Sampled: NA Date Received: NA

Date Extracted: 01/14/93 Date Analyzed: 01/26/93

·		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
Phenol	<	330	ug/kg
Bis(2-Chloroethyl) Ether	<	330	ug/kg
2-Chlorophenol	<	330	ug/kg
1,3-Dichlorobenzene	<	330	ug/kg
1,4-Dichlorobenzene	<	330	ug/kg
Benzyl Alcohol	<	660	ug/kg
1,2-Dichlorobenzene	<	330	ug/kg
2-Methylphenol	<	330	ug/kg
Bis(2-Chloroisopropyl) Ether	<	330	ug/kg
4-Methylphenol	<	330	ug/kg
N-Nitroso-di-n-propylamine	<	330	ug/kg
Hexachloroethane	<.	330	ug/kg
Nitrobenzene	<	330	ug/kg
Isophorone	Κ.	000	ug/kg
2-Nitrophenol	<	330	ug/ka
2,4-Dimethylphenol	<	330	ug/kg
Benzoic Acid	<.	1,700	ug/kg
Bis(2-Chloroethoxy) methane	<	330	ug/kg
2,4-Dichlorophenol	<	330	ug/kg
1,2,4-Trichlorobenzene	<	330	ug/kg
Naphthalene	<	330	ug/kg
4-Chloroaniline	- C	560	ug/kg
Hexachlorobutadiene	•	330	ug/kg
4-Chloro-3-methylphenol	<	560	ug/kg
2-Methylnaphthalene	* \$	333	ug/kg
Hexachlorocyclopentadiene	<	336	ug/kg
2,4,6-Trichlorophenol	<	330	ug/kg
2,4,5-Trichlorophenol	<	330	ug/kg
2-Chloronaphthalene	<	330	ug/kg
2-Nitroaniline	<	1.700	ug/kg
Dimethyl Phthalate	€.	339	ug/kg
Acenaphthylene	·	330	ug/kg
3-Nitroaniline	<.	1,700	ug/kg
Acenaphthene	;	350	ug/kg
2,4-Dinitrophenol	<	1.730	ug/kg
4-Mitrophenol	••		ug/kg
Dibenzofuran	.*	100	ugʻkg

NA = Not Applicable

c = Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270 continued)

VISTA Sample ID: 935754-Blank

		Reporting	
Analyte	Result	Limit	<u> Units</u>
2,4-Dinitrotoluene	<	330	ug/kg
2,6-Dinitrotoluene	<	330	ug/kg ug/ kg
Diethyl Phthalate	<	330	ug/kg
4-Chlorophenyl Phenyl Ether	<	330	ug/kg
Fluorene	<	330 ·	ug/kg
4-Nitroaniline	<	1,700	ug/kg
4,6-Dinitro-2-methylphenol	<	1,700	ug/kg
N-Nitrosodiphenylamine	<	330	ug/kg
4-Bromophenyl Phenyl Ether	<	330	ug/kg
Hexachlorobenzene	<	330	ug/kg
Pentachlorophenol	<	1,700	ug/kg
Phenanthrene	<	330	ug/kg
Anthracene	<	330	ug/kg
Di-n-butyl Phthalate	<	330	ug/kg
Fluoranthene	<	330	ug/kg
Pyrene	<	330	ug/kg
Butylbenzyl Phthalate	<	330	ug/kg
3,3'-Dichlorobenzidine	<	660	ug/kg
Benzo(a)anthracene	<	330	ug/kg
Bis(2-Ethylhexyl) Phthalate	<	330	ug/kg
Chrysene	<	330	ug/kg
Di-n-octyl Phthalate	<	330	ug/kg
Benzo(b)fluoranthene	<	330	ug/kg
Benzo(k)fluoranthene	<	330	ug/kg
Benzo(a)pyrene	<	330	ug/kg
Indeno(1,2,3-cd)pyrene	<	330	ug/kg
Dibenz(a,h)anthracene	<	330	ug/kg
Benzo(g,h,i)perylene	<	330	ug/kg
Surrogate Recoveries			OC Limits
Nitrobenzene-d ₅	100	÷,	35-93
2-Fluorobiphenyl	105	3	27-99
Terphenyl-d ₁₄	116	Š	57-109
Phenol-d _s	100	<i>\\</i>	26-102
2-Fluorophenol	91	₹g	16-97
2,4,6-Tribromophenol	100	Ę.	10-131

< = Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-Blank Sample Type: Waste Date Sampled: NA Date Received: 01/13/93 Date Extracted: 01/14/93 Date Analyzed: 01/26/93

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
Phenol	,	100	
Bis(2-Chloroethyl) Ether	< <	100	mg/kg
2-Chlorophenol	<	100	mg/kg
		100	mg/kg
1,3-Dichlorobenzene	<	100	mg/kg
1,4-Dichlorobenzene	<	100	mg/kg
Benzyl Alcohol	<	200	mg/kg
1,2-Dichlorobenzene	<	100	mg/kg
2-Methylphenol	<	100	mg/kg
Bis(2-Chloroisopropyl) Ether	<	100	mg/kg
4-Methylphenol	<	100	mg/kg
N-Nitroso-di-n-propylamine	<	100	mg/kg
Hexachloroethane	• ".	100	mg/kg
Nitrobenzene	<,'	100	mg/kg
Isophorone	<	100	mg/kg
2-Nitrophenol	•.	100	mg/kg
2,4-Dimethylphenol	<<	100	mg/kg
Benzoic Acid	<	500	mg/kg
Bis(2-Chloroethoxy) methane	<	100	mg/kg
2,4-Dichlorophenol	ς;	100	mg/kg
1,2,4-Trichlorobenzene	•	100	mg/kg
Naphthalene		199	mg/kg
4-Chloroaniline	•<	200	mg/kg
Hexachlorobutadiene		100	mg/kg
4-Chloro-3-methylphenol	₹.	200	mg/kg
2-Methylnaphthalene	*	100	mg/kg
Hexachlorocyclopentadiene	<.	100	mg/kg
2,4,6-Trichlorophenol	4.	100	mg/kg
2,4,5-Trichlorophencl	<	100	mg/kg
2-Chloronaphthalene	<	100	mg/kg
2-Nitroaniline	۸,	500	mg/kg
Dimethyl Phthalate	\mathcal{L}_{i_0}	100	mg/kg
Acenaphthylene		100	mg/kg
3-Nitroaniline		500	mg/kg
Acenaphthene		100	mg/kg
2,4-Dinitrophenol		500	mg/kg
4-Nitrophenol	• 1	500	mg/kg
Dibenzofuran	<	100	mg/kg
	•	÷ = =	

NA = Not Applicable

Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270 (continued)

VISTA Sample ID: 935754-Blank

3.86° (

		Reporting	
Analyte	Result	<u>Limit</u>	<u>Units</u>
2,4-Dinitrotoluene	<	100	mg/kg
2,6-Dinitrotoluene	<	100	mg/kg
Diethyl Phthalate	<	100	mg/ka
4-Chlorophenyl Phenyl Ether	<	100	mg/kg
Fluorene	<	100	mg/kg
4-Nitroaniline	<	500	mg/kg
4,6-Dinitro-2-methylphenol	<	500	mg/kg
N-Nitrosodiphenylamine	<	100	mg/kg
4-Bromophenyl Phenyl Ether	<	100	mg/kg
Hexachlorobenzene	<	100	mg/kg
Pentachlorophenol	<	500	mg/kg
Phenanthrene	<	100	mg/kg
Anthracene	<	100	mg/kg
Di-n-butyl Phthalate	<	100	mg/kg
Fluoranthene	<	100	mg/kg
Pyrene	<	100	mg/kg
Butylbenzyl Phthalate	. <	100	mg/kg
3,3'-Dichlorobenzidine	<	200	mg/kg
Benzo(a)anthracene	<	100	mg/kg
Bis(2-Ethylhexyl) Phthalate	<	100	mg/kg
Chrysene	<	100	mg/kg
Di-n-octyl Phthalate	<	100	mg/kg
Benzo(b)fluoranthene	<	100	mg/kg
Benzo(k)fluoranthene	•:	100	mg/kg
Benzo(a)pyrene	<	100	mg/kg
Indeno(1,2,3-cd)pyrene	<	100	mg/kg
Dibenz(a,h)anthracene	<	100	mg/kg
Benzo(g,h,i)perylene	<	100	mg/kg
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	94	S;	32-118
2-Fluorobiphenyl	107	3	27-114
Terphenyl-d ₁₄	113	\$ ₁	44-131
Phenol-d ₆	92	·5	32-121
2-Fluorophenol	91	8	10-141
2,4,6-Tribromophenol	90	3. 3	18-134

< = Compound not detected at or above the listed repolling limit.</p>

Quality Assurance Semivolatile Organics - EPA Method 8270 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-BLSP

Date Sampled : NA

Date Extracted: 01/14/93

Sample Type: Soil Date Received: NA

Date Analyzed: 01/26/93

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	MS Conc.			QC mits Rec
Phenol	3330	ND	3800	114		0-96
2-Chlorophenol	3330	ND	3050	92		4-99
1,4-Dichlorobenzene	1670	ND	1330	80		8 - 95
Di-n-propylnitrosamine 1,2,4-Trichlorobenzene	1670 1670	ND ND	1480 1200	89 72		2-112
4-Chloro-3-methylphenol	3330	ND	2740	72 82		3-115 1-117
Acenaphthene	1670	ND	1380	83		1-11, 2-144
4-Nitrophenol	3330	ND	3010	90		2-144 0-126
2,4-Dinitrotoluene	1670	ND	1420	85		0-127
Pentachlorophenol	3330	ND	2860	86		0 - 133
Pyrene	1670	ND	1460	87)-127
Compound	Spike Added (ug/kg)	MSD Conc. (ug/kg)	MSD ^⅔ Rec	<u>RPD</u>		C nits <u>& Rec</u>
Phenol	3330	4000	120	5		20-94
2-Chlorophenol	3330	3340	100	3	19	24-99
1,4-Dichlorobenzene	1670	1400	84	5	17	28+96
Di-n-propylnitrosamine	1670	1560	93	•	23	22-11
1,2,4-Trichlorobenzene	1670	1310	78	6	40	23-11:
4-Chloro-3-methylphenol	3330	2970	89	ε	30	21-11"
Acenaphthene	1670	1470	38	6	13	22-14:
4-Nitrophenol	3330	3350	101	12	39	10-12/
2,4-Dinitrotoluene	1670	1590	95	11	23	10-117
Pentachlorophenol	3330	3240	97	12	2 -	10-13.
Pyrene	1670	1,530	95	9	2.0	30-10

NA Not Applicable ND = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate
RPD - Relative Percent Difference

Quality Assurance Semivolatile Organics - EPA Method 8270 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-BLSP Sample Type: Waste

Date Sampled : NA

Date Extracted: 01/14/93

Date Received: NA

Date Analyzed: 01/26/93

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg		Li	QC mits <u>Rec</u>
Phenol 2-Chlorophenol 1,4-Dichlorobenzene Di-n-propylnitrosamine 1,2,4-Trichlorobenzene	400 400 200 200 200	ND ND ND ND ND	469 355 188 133 173	117 89 94 67 87	25 28 41	6-90 5-102 3-104 L-126 3-107
4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	400 200 400 200 ;00 200	ND ND ND ND ND	319 196 248 154 297 202	80 98 62 77 74 101	31 11 28 17	5-103 1-137 1-114 1-89 1-109 1-142
Compound	Spike Added (mg/kg)	MSD Conc. (mg/kg)	MSD <u>% Rec</u>	<u>RPD</u>		C its 考 Rec
Phenol 2-Chlorophenol 1,4-Dichlorobenzene Di-n-propylnitrosamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	400 400 200 200 200 400 200 400 200 400 200	540 439 199 184 188 376 209 349 188 364 215	135 110 100 92 94 94 105 37 94 91	14 21 6 31 8 16 7 34 20 21	35 50 27 38 23 33 19 50 47 47 36	26-91 25-101 25-104 41-106 33-107 26-101 31-107 11-114 28-87 17-109 35-140

NA = Not Applicable ND - Not Detected

MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Oil and Grease Gravimetric - Modified EPA Method 9070

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-Blank Sample Type: Soil

Date Sampled : NA

Date Analyzed: 01/15/93

Date Received: NA

		Reporting		
Analyte	Fesult	Limit	Units	
Oil and Grease	<	50	mg/kg	

Quality Assurance oil and Grease - Modified EPA Method 9070 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935754-BLSP

Date Sampled : NA

Date Analyzed: 01/15/93

Sample Type: Soil Date Received: NA

		-	Sample			QC
Compound		Added (mg/kg)	Conc. (mg/kg)	Conc. (mg/kg)	MS 多 Rec	Limits <u>% Rec</u>
Oil and Grease	(Motor Oil)	510	ND	533	105	35-141

	Spike Added	MSD Conc.	MSD		Q Lim	_
Compound	(mg/kg)	(ma/kg)	<u>₹ Rec</u>	RPD	<u>RPD</u>	<u>३ Rec</u>
oil and Grease (Motor Oil)	563	603	107	2	37	35-141

NA = Not Applicable ND = Not Detected MS = Matriw Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

HAZEN RESEARCH, INC.

4601 Indiana St. · Golden, CO 80403

Date/Time

tellinguished by: (Signature)

Received for laboratory by:

(Signature)

Tel.: (303) 279-4501 · Telex 45-860

1-13-93 Vista **CHAIN OF CUSTODY RECORD** rol No. Project Name Saltech 7634-13 5 iamplers (Signature) O TRA No. of Station Location Containers Time Compl Grab ta. No. Remarks 18.1-46532-3-51 1-15-13 separate condensate into a lange 18.2-46532-2-524 not - fractions before analysis 15.23 46532-1-61 * inke frems extract from the oil & greene procedure (9071) 4. $-H_{-}(\omega)$ ٠, ' do a simulated distillation of this If there are any questions, place contact Roger Nielas sy ass. TOG in solid simple. gnly tellnquished by (Signature) Relinquished by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) 1-13 93 in 19th Parylin 11.50 1-13-93/1706 Received by: (Signature) Relinquished by: (Signature) Iolinguished by: (Signature) Date/Time Date/Time Received by: (Signature)

Remarks:

Distribution White Copy Ship With Sample Country Copy Taboratory Copy Pink Copy Specific

305 Inter token Parkway, 30 to 000 Broomle di 00 tirado 6000 (303) 469-666

RECEIVED

February 24, 1993

MAR 0 2 1993

CANONIE-CORPORATE

Mr. Roger Nielson Soil Tech 6300 South Syracuse #300 Englewood, Colorado 80111

Dear Mr. Nielson:

Enclosed are the results from the analyses of six soil samples and four waste samples, received on January 29, 1993, for the determination of total recoverable petroleum hydrocarbons, oil and grease, polychlorinated biphenyls, volatile organic compounds, semivolatile organic compounds and TOC. Please feel free to call if you have any questions regarding these analyses.

Sincerely,

Robert J. Keck

Laboratory Director

RJK GT rt Enclosures

VISTA Project # 935805

Reviewed by.

Gary Torf

Quality Assurance Director

Sample Description

Laboratory ID	Client ID	<u>Type</u>	Date Received
935805-001	18.5-46532-3S-S1	Soil	01/29/93
935805-002	18.8-46532-4S-S1	Soil	01/29/93
935805-003	18.6-46532-3S-S2H	Soil	01/29/93
935805-004	18.7-46532-3S-S2L	Soil	01,29/93
935805-005	18.9-46532-4S-S2H	Soil	01/29/93
935805-006	18.10-46532-4S-S2L	Soil	01/29/93
935805-007L	18.67-46532-3S-L1(W)	Waste	01/29/93
935805-007U	18.67-46532-3S-L1(O)	Waste	01/29/93
935805-008L	18.910-46532-4S-L1(W)	Waste	01/29,93
935805-008U	18.910-46532-4S-L1(O)	Waste	01/29/93

Results and Discussion

VISTA Project # 935805

Six soil samples and four waste samples were received on January 29, 1993, for the determination of total recoverable petroleum hydrocarbons, oil and grease, polychlorinated biphenyls, volatile organic compounds, semivolatile organic compounds and TOC. The samples were analyzed according to the protocols described in USEPA SW-846, Test Methods for Evaluating Solid Waste, 3rd Ed and Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-02.

Quality Control (QC) results are reported for another client's samples which were prepared and analyzed with these samples. Sample information for the QC samples is withheld to maintain client confidentiality.

VISTA samples 935805-003, -004, -005 and -006 (your ID's 18.6-46532-3S-S2H, 18.7-46532-3S-S2L, 18.9-46532-4S-S2H and 18.10-46532-4S-S2L) were analyzed for TOC by Huffman Laboratories. Inc. Their report is enclosed.

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech

Client Sample ID: 18.5-46532-3S-S1

VISTA Sample ID: 935805-001

Date Sampled: 01/28/93
Date Extracted: 02/09/93

Sample Type: Soil

Date Received: 01/29/93 Date Analyzed: 02/09/93

Analyte Result Limit Units

TRPH 7,700 400 mg/kg

Simulated Distillation/Total Petroleum Hydrocarbons GC/FID - ASTH D2887/CDHS Method

Client: Soil Tech

Client Sample ID: 18.5-46532-35-S1

Sample Type: Soil

VISTA Sample ID: 935805-001 Date Sampled: 01/28/93 Date Received: 01/29/93 Date Analyzed: 02/09/93 Date Extracted: 02/08/93

Hydrocarbon - Boiling Point	Eluting
C ₇ - 98°C C ₈ - 126°C C ₉ - 151°C C ₁₀ - 174°C	0 %
C _a - 126°C	12 %
C 151°C	31 %
C ₁₀ - 174°C	47 %
C ₁₁ - 196°C	64 %
C ₁₂ - 216°C	72 %
C ₁₄ - 254°C	78 %
C ₁₆ - 287°C	80 %
C ₁₈ - 316°C	81 %
$C_{20} - 344 ^{\circ}\text{C}$	82 %
C ₂₀ - 344°C C ₂₄ - 391°C C ₂₈ - 431°C	84 %
C ₂₈ - 431°C	88 %
C ₁₂ - 466°C	92 3
C ₃₆ - 496°C	100 %
C ₃₂ - 466°C C ₃₆ - 496°C C ₄₀ - 522°C	100 3
C 545°C	100 3

Oil and Grease Gravimetric - Modified EPA Method 9070

Client: Soil Tech

Client Sample ID: 18.5-46532-3S-S1

VISTA Sample ID: 935805-001 Date Sampled: 01/28/93 Date Analyzed: 02/08/93

Sample Type: Soil Date Received: 01/29/93

Analyte	<u>Result</u>	Reporting <u>Limit</u>	<u>Units</u> .
Oil and Grease	4,700	50	mg/kg

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech

Client Sample ID: 18.8-46532-4S-S1 VISTA Sample ID: 935805-002

Date Sampled: 01/28/93 Date Extracted: 02/09/93

Sample Type: Soil

Date Received: 01/29/93 Date Analyzed: 02/09/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
TRPH	29,000	4,000	mg/ka

Simulated Distillation/Total Petroleum Hydrocarbons GC/FID - ASTM D2887/CDHS Method

Client: Soil Tech

Client Sample ID: 18.8-46532-4S-S1

VISTA Sample ID: 935805-002 Sample Type: Soil

Date Sampled: 01/28/93 Date Received: 01/29/93
Date Extracted: 02/08/93 Date Analyzed: 02/10/93

Hyd	rocarbon - Boiling Point	<pre></pre>
C7	- 98°C	0 %
$C_{\mathbf{g}}$	- 126°C	O %
C.	- 151°C	1 %
C ₈ C ₉ C ₁₀	- 174°C	7 %
C ₁₁	- 196°C	9 %
C ₁₂	- 216°C	10 %
C14	- 254°C	99 考
C ₁₆	- 287°C	99 %
C ₁₈	- 316°C	100 %
C ₂₀	- 344°C	100 🕏
C ₂₄	- 391°C	100 ક
C ₂₈	- 431°C	100 🕏
C ₃₂	- 466°C	100 🗟
C ₃₆	- 496°C	160 }
C40	- 522°C	100 🖫
C44	- 545°C	100 3

Oil and Grease Gravimetric - Modified EPA Method 9070

Client: Soil Tech

Client Sample ID: 18.8-46532-4S-S1

VISTA Sample ID: 935805-002 Sample Type: Soil
Date Sampled: 01/28/93 Date Received: 01/29/93

Date Sampled: 01/28/93 Date Analyzed: 02/09/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
Oil and Grease	400,000	50	mg/kg

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech

Client Sample ID: 18.6-46532-3S-S2H

VISTA Sample ID: 935805-003 Sample Type: Soil Date Sampled: 01/28/93

Date Received: 01/29/93

Date Extracted: 02/09/93

Date Analyzed: 02/09/93

No. of No.		Reporting	
Analyte	Result	<u>Limit</u>	<u>Units</u> .
TRPH	<	40	mg/kg

Compound not detected at or above the listed reporting limit.

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.6-46532-3S-S2H

VISTA Sample ID: 935805-003

Date Sampled: 01/28/93
Date Extracted: 02/03/93

Sample Type: Soil

Date Received: 01/29/93
Date Analyzed: 02/03/93

Analyte	Result	Reporting <u>Limit</u>	<u>Uni</u> ts
PCB-1016	<	3	mg/kg
PCB-1221	<	3	mg/kg
PCB-1232	<	2	mg/kg
PCB-1242	<	. 1	mg/kg
PCB-1248	<	1	mg/kg
PCB-1254	<	1	mg/kg
PCB-1260	<	1	mg/kg

< = Compound not detected at or above the listed reporting limit.

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech Client Sample ID: 18.6-46532-3S-S2H

VISTA Sample ID: 935805-003 Sample Type: Soil Date Sampled: 01/28/93 Date Received: 01/29/93

Date Analyzed: 02/10/93

		Reporting	•
<u>Analyte</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>
Ch large than		1 000	()
Chloromethane Bromomethane	<	1,000	ug/kg
Vinyl Chloride	<	1,000	ug/kg
Chloroethane	<	1,000	ug/kg
Methylene Chloride		1,000 500	ug/kg
Acetone	(120) *		ug/kg
Carbon Disulfide	(5,400)*	10,000 500	ug/kg
1,1-Dichloroethene	<	500	ug/kg
1,1-Dichloroethane	<	500	ug/kg ug/kg
1,2-Dichloroethenes, total	<	500	
Chloroform	<	500	ug/kg ug/kg
1,2-Dichloroethane	<	500	ug/kg ug/kg
2-Butanone	(140) *	10,000	ug/kg ug/kg
1,1,1-Trichloroethane	(350)*	500	ug/kg ug/kg
Carbon Tetrachloride	(330) ~	500	ug/kg
Vinyl Acetate	<	5,000	ug/kg ug/kg
Bromodichloromethane	₹	500	ug/kg
1,2-Dichloropropane	<	500	ug/kg
Trans-1,3-Dichloropropene	<	500	ug/kg
Trichloroethene	₹	500	ug/kg
Dibromochloromethane	è	500	ug/kg
1,1,2-Trichloroethane	Κ.	500	ug/kg
Benzene		500	ug/kg
Cis-1,3-Dichloropropene		500	ug/kg
2-Chloroethyl Vinyl Ether	Ž.	1,000	ug/kg
Bromoform		500	ug/kg ug/kg
4-Methyl-2-Pentanone	• •*	5,000	ug/kg
2-Hexanone	·	5,000	ug/kg
Tetrachloroethene	<	500	ug/kg
1,1,2,2-Tetrachloroethane	€;	500	ug/kg
Toluene	(120) *	500	ug/kg
Chlorobenzene	< 220)	500	= -
Ethvlbenzene		500	ug/kg ug/kg
Styrene		500	ug/kg
- Mylenes, total	•5	500 500	ug/Ku ug/Ku
Agrenes, cour	`a	5.1	algoring
Surrogate Recoveries			<u> 20 Limit</u> s
Toluene-d _a	209	•	55-133
4-Bromofluorobenzene	97	*. *:	66-104
1,2-Dichloroethane-d ₄	2.5	÷ •	59-127
1, b biolitor occiding at	= ==	Ş	99 227

[→] Detected below reporting limit; quantitation may be unreliable.
→ Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 13.6-46532-3S-S2H

VISTA Sample ID: 935805-003 Sample Type: Soil

Date Sampled: 01/28/93 Date Received: 01/29/93
Date Extracted: 02/11/93 Date Analyzed: 02/13/93

Analyte	Result	Reporting Limit	Units
Phenol	<	1,650	ug/kg
Bis(2-Chloroethyl) Ether	<	1,650	ug/kg
2-Chlorophenol	<	1,650	ug/kg
1,3-Dichlorobenzene	<	1,650	ug/kg
1,4-Dichlorobenzene	<	1,650	ug/kg
Benzyl Alcohol	<	3,300	ug/kg
1,2-Dichlorobenzene	<	1,650	ug/kg
2-Methylphenol	<	1,650	ug/kg
Bis(2-Chloroisopropyl) Ether	<	1,650	ug/kg
4-Methylphenol	<	1,650	ug/kg
N-Nitroso-di-n-propylamine	<	1,650	ug/kg
Hexachloroethane	<	1,650	ug/kg
Nitrobenzene	<	1,650	ug/kg
Isophorone	<	1,650	ug/kg
2-Nitrophenol	<	1,650	ug/kg
2,4-Dimethylphenol	<	1,650	ug/kg
Benzoic Acid	<	8,500	ug/kg
Bis(2-Chloroethoxy)methane	<	1,650	ug/kg
2,4-Dichlorophenol	<	1,650	ug/kg
1,2,4-Trichlorobenzene	<	1,650	ug/kg
Naphthalene	<	1,650	ug/kg
4-Chloroaniline	<	3,300	ug/kg
Hexachlorobutadiene	<	1,650	ug/kg
4-Chloro-3-methylphenol	<	3,300	ug/kg
2-Methylnaphthalene	<	1,650	ug/kg
Hexachlorocyclopentadiene	<	1,650	ug/kg
2,4,6-Trichlorophenol	<	1,650	ug/kg
2,4,5-Trichlorophenol	<	1,650	ug/kg
2-Chloronaphthalene	<	1,650	ug/kg
2-Nitroaniline	<	8,500	ug/kg
Dimethyl Phthalate	<	1,650	ug/kg
Acenaphthylene	<	1,650	ug/kg
3-Nitroaniline	<	8,500	ug/kg
Acenaphthene	<	1,650	ug/kg
2,4-Dinitrophenol	< ,	9,500	ug/kg
4-Nitrophenol	<	3,500	ug/kg
Dibenzofuran	<	1,650	ug/kg

< = Compound not detected at or above the listed reporting limit.</p>

Semivolatile Organic Compounds - EPA Method 8270 mintimues

VISTA Sample ID: 935505-103

		Reporting	
Analyte	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	1,650	ug/kg
2,6-Dinitrotoluene	<	1,650	ug/kg
Diethyl Phthalate	<	1,650	ug/kg
4-Chlorophenyl Phenyl Ether	<	1,650	ug/kg
Fluorene	<	1,650	ug/kg
4-Nitroaniline	<	8,500	ug/kg
4,6-Dinitro-2-methylphenol	<	8,500	ug/kg
N-Nitrosodiphenylamine	<	1,650	ug/kg
4-Bromophenyl Phenyl Ether	<	1,650	ug/kg
Hexachlorobenzene	<	1,650	ug/kg
Pentachlorophenol	<	8,500	ug/kg
Phenanthrene	<	1,650	ug/kg
Anthracene	<	1,650	ug/kg
Di-n-butyl Phthalate	<	1,650	ug/kg
Fluoranthene	<	1,650	ug/kg
Pyrene	<	1,650	ug/kg
Butylbenzyl Phthalate	x,*	1,650	ug/kg
3,3'-Dichlorobenzidine	,	3,300	ug/kg
Benzo(a)anthracene	٠,	1,650	ug/kg
Bis(2-Ethylhexyl) Phthalate	K.*	1,650	ug/kg
Chrysene	<.	1,650	ug/kg
Di-n-octyl Phthalate	<;	1,650	ug/kg
Benzo(b)fluoranthene	~	1,650	ug/kg
Benzo(k)fluoranthene	ς;	1,650	ug/kg
Benzo(a)pyrene	•	1,650	ug/kg
Indeno(1,2,3-cd)pyrene	4.	1,650	ug/kg
Dibenz(a,h)anthracene	<	1,650	ug/kg
Benzo(g,h,i)perylene	•:	1,653	ug/kg
(311.E1.T		- /	49/9
Surrogate Recoveries			20 Limits
Nitrobenzene-d _s	65	•	35-93
2-Fluorobiphenyl	33	₹	37-99
Terphenyl-d ₁₄	103	1	57 - 103
Phenol-d _s	÷7		26-102
2-Fluorophenol	3.0		15-3"
2,4,5-Tribromophenol			
•			~

 $[\]sim$ \sim Compound not detected at or above the listed reporting limit.

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech

Client Sample ID: 18.7-46532-3S-S2L

VISTA Sample ID: 935805-004 Sample Type: Soil
Date Sampled: 01/28/93 Date Received: 01/29/93
Date Extracted: 02/09/93 Date Analyzed: 02/09/93

<u>Analyte</u>	Result	Reporting <u>Limit</u>	<u>Units</u>
TRPH	< '	40	mg/kg

< = Compound not detected at or above the listed reporting limit.</p>

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Sample Type: Soil

Client Sample ID: 18.7-46532-3S-S2L VISTA Sample ID: 935805-004 S Date Sampled: 01/28/93 D Date Received: 01/29/93 Date Extracted: 02/03/93 Date Analyzed: 02/03/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
PCB-1016	<	3	mg/kg
PCB-1221	<	3	mg/kg
PCB-1232	<	2	mg/kg
PCB-1242	<	1	mg/kg
PCB-1248	<	1	mg/kg
PCB-1254	<	1	mg/kg
PCB-1260	<	1	mg/kg

R = Compound not detected at or above the listed reporting limit.

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.7-46532-33-S2L
VISTA Sample ID: 935805-004 Sample Type: Soil
Date Sampled: 01/28/93 Date Received: 01/29/93
Date Analyzed: 02/10/93

1,2-Dichloroethane-d₄

			
		Reporting	
Analyte	Result	Limit	<u> Units</u>
Chloromethane	<	1,000	ug/kg
Bromomethane	<	1,000	ug/kg
Vinyl Chloride	<	1,000	ug/kg
Chloroethane	<	1,000	ug/kg
Methylene Chloride	(100) *	500	ug/kg
Acetone	(1,200)*	10,000	ug/kg
Carbon Disulfide	(170) *	500	ug/kg
1,1-Dichloroethene	` <	500	ug/kg
1,1-Dichloroethane	<	500	ug/kg
1,2-Dichloroethenes, total	<	500	ug/kg
Chloroform	<	500	ug/kg
1,2-Dichloroethane	<	500	ug/kg ug/kg
2-Butanone	<	10,000	ug/kg
1,1,1-Trichloroethane	ς .	500	ug/kg
Carbon Tetrachloride	· <	500	ug/kg ug/kg
Vinyl Acetate	<	5,000	
Bromodichloromethane	<	500	ug/kg
1,2-Dichloropropane	<	500	ug/kg
Trans-1,3-Dichloropropene	<	500	ug/kg
Trichloroethene	<	500	ug/kg
	<		ug/kg
Dibromochloromethane		500	ug/kg
1,1,2-Trichloroethane	· <	500	ug/kg
Benzene	<	500	ug/kg
Cis-1,3-Dichloropropene		500	ug/kg
2-Chloroethyl Vinyl Ether	<	1,000	ug/kg
Bromoform	<	500	ug/kg
4-Methyl-2-Pentanone	<	5,000	ug/kg
2-Hexanone	<	5,000	ug/kg
Tetrachloroethene	<	500	ug/kg
1,1,2,2-Tetrachloroethane	<	500	ug/kg
Toluene	<	500	ug/kg
Chlorobenzene	<	500	ug/kg
Ethylbenzene	. <	500	ug/kg
Styrene	<	500	ug/kg
Xylenes, total	<	500	ug/kg
Surrogate Recoveries			QC Limits
Toluene-d _s	111	্ত্তী উ	36-103
4-Bromofluorobenzene	108	.5	55-134
a o mai sa a successiva de la compa de	2.5	5	- · · - ·

^{*} Detected below reporting limit; quantitation may be unreliable. < = Compound not detected at oxymbove the listed reporting the reliable.

92

Semivolatile Organic Compounds - EPA Method 6270

Client: Soil Tech

Client Sample ID: 18.7-46532-35-821.

VISTA Sample ID: 935805-004

Date Sampled: 01/28/93

Date Extracted: 02/11/93

Sample Type: Soil

Date Received: 01/29/93

Date Analyzed: 02/13/93

		Reporting	
<u>Analyte</u>	Result	Limit	Units
Phenol	<	1,650	ug/kg
Bis(2-Chloroethyl) Ether	<	1,650	ug/kg
2-Chlorophenol	<	1,650	ug/ky
1,3-Dichlorobenzene	<	1,650	ug/kg
1,4-Dichlorobenzene	<	1,650	ug/kg
Benzyl Alcohol	<	3,300	ug/kg
1,2-Dichlorobenzene	<	1,650	ug/kg
2-Methylphenol	<	1,650	ug/kg
Bis(2-Chloroisopropyl) Ether	<	1,650	ug/kg
4-Methylphenol	<	1,650	ug/kg
N-Nitroso-di-n-propylamine	<	1,650	ug/kg
Hexachloroethane	<	1,650	ug/kg
Nitrobenzene	<	1,650	ug/kg
Isophorone	<	1,650	ug/kg
2-Nitrophenol	<.	1,650	ug/kg
2,4-Dimethylphenol	<	1,650	ug/kg
Benzoic Acid	<	8,500	ug/kg
Bis(2-Chloroethoxy) methane	<	1,650	ug/kg
2,4-Dichlorophenol	<	1,650	ug/kg
1,2,4-Trichlorobenzene	<	1,650	ug/kg
Naphthalene	<.	1,650	ug/kg
4-Chloroaniline	<.	3,300	ug/kg
Hexachlorobutadiene	<.	1,650	ug/kg
4-Chloro-3-methylphenol	<	3,300	ug/kg
2-Methylnaphthalene	K	1,650	ug/kg
Hexachlorocyclopentadiene	• 4	1,650	ug/kg
2,4,6-Trichlorophenol	<	1,650	ug/kg
2,4,5-Trichlorophenol	<	1,650	ug/kg
2-Chloronaphthalene	<.	1,650	ug/kg
2-Nitroaniline	<	8,500	ug/kg
Dimethyl Phthalate	•.0	1,650	ug/kg
Acenaphthylene	<	1,650	ug/kg
3-Nitroaniline	<	2,500	ug/kg
Acenaphthene	Κ,	1,650	ug/kg
2,4-Dinitrophenol	• ;	8,500	ug/kg
4-Nitrophenol	•	3,500	ua/ka
Dibenzofuran		1,650	ua/ka
o escheolar an	•	, 3 - 3	many y and

c = Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - SPA Method 8270 continued.

VISTA Sample ID: 935805-004

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	1,650	ug/kg
2,6-Dinitrotoluene	<	1,650	ug/kg
Diethyl Phthalate	<	1,650	ug/kg
4-Chlorophenyl Phenyl Ether	<	1,650	ug/kg
Fluorene	<	1,650	ug/kg
4-Nitroaniline	<	8,500	ug/kg
4,6-Dinitro-2-methylphenol	<	8,500	ug/kg
N-Nitrosodiphenylamine	<	1,650	ug/kg
4-Bromophenyl Phenyl Ether	<	1,650	ug/kg
Hexachlorobenzene	<	1,650	ug/kg
Pentachlorophenol	<	8,500	ug/kg
Phenanthrene	<	1,650	ug/kg
Anthracene	<	1,650	ug/kg
Di-n-butyl Phthalate	<	1,650	ug/kg
Fluoranthene	<	1,650	ug/kg
Pyrene	<.	1,650	ug/kg
Butylbenzyl Phthalate	<	1,650	ug/kg
3,3'-Dichlorobenzidine	<	3,300	ug/kg
Benzo(a)anthracene	<.	1,650	ug/kg
Bis(2-Ethylhexyl) Phthalate	<	1,650	ug/kg
Chrysene	<	1,650	ug/kg
Di-n-octyl Phthalate	<	1,650	ug/kg
Benzo(b) fluoranthene	•:	1,650	ug/kg
Benzo(k) fluoranthene	<	1,650	ug/kg
Benzo(a)pyrene	<	1,650	ug/kg
Indeno(1,2,3-cd)pyrene	<	1,650	ug/kg
Dibenz(a,h)anthracene	. (.	1,650	ug/kg
Benzo(g,h,i)perylene	<,	1,650	ug/kg
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	56	3	35-93
2-Fluorobiphenyl		\$	27-99
Terphenyl-d ₁₄	115	3	57-109
Phenol-d ₆	5.2	i,	26-100
2-Fluorophenol	45		16-97
2,4,6-Tribromophenol	· 51	₽.	10-101

< = Compound not detected at or above the listed reporting limit.</p>

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech

Client Sample ID: 18.9-46532-48-82H

VISTA Sample ID: 935805-005 Date Sampled: 01/28/93 Date Extracted: 02/09/93

Sample Type: Soil

Date Received: 01/29/93 Date Analyzed: 02/09/93

<u>Analyte</u>	Result	Reporting <u>Limit</u>	<u>Units</u>
TRPH	<	40	mg/kg

< - Compound not detected at or above the listed reporting limit.

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.9-46532-4S-S2H

VISTA Sample ID: 935805-005

Date Sampled: 01/28/93
Date Extracted: 02/03/93

Sample Type: Soil

Date Received: 01/29/93
Date Analyzed: 02/03/93

Analyte	Result	Reporting Limit	<u>Units</u>
PCB-1016	<	3	mg/kg
PCB-1221	<	3	mg/kg
PCB-1232	<	2	mg/kg
PCB-1242	<	1	mg/kg
PCB-1248	<	1	mg/kg
PCB-1254	<	1	mg/kg
PCB-1260	<	1	mg/kg

< = Compound not detected at or above the listed reporting limit</p>

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.9-46832-48-808
VISTA Sample ID: 935805-005
Date Sampled: 01/28/93
Date Received: 01/29/93

Date Analyzed: 02/0/93

		Reporting	
<u>Analyte</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>
		1 000	(1
Chloromethane	<	1,000	ug/kg
Bromomethane	<	1,000	ug/kg
Vinyl Chloride	<	1,000	ug/kg
Chloroethane	(110) *	1,000	ug/kg
Methylene Chloride	<	500	ug/kg
Acetone	(1,800)*	10,000	ug/kg
Carbon Disulfide	<	500	ug/kg
1,1-Dichloroethene	<	500	ug/kg
1,1-Dichloroethane	<	500	ug/kg
1,2-Dichloroethenes, total	<	500	ug/kg
Chloroform	<	500	ug/kg
1,2-Dichloroethane	<	500	ug/kg
2-Butanone	<	10,000	ug/kg
1,1,1-Trichloroethane	(220) *	500	ug/kg
Carbon Tetrachloride	<	500	ug/kg
Vinyl Acetate	• *	5,000	ug/kg
Bromodichloromethane	<.	500	ug/kg
1,2-Dichloropropane	<	500	ug/kg
Trans-1,3-Dichloropropene	*	500	ug/kg
Trichloroethene	<	500	ug/kg
Dibromochloromethane	•**	500	ug/kg
1,1,2-Trichloroethane	• *	500	ug/kg
Benzene	•	500	ug/kg
Cis-1,3-Dichloropropene	٠.	500	ug/kg
2-Chloroethyl Vinyl Ether	ϵ_s^r	1,000	ug/kg
Bromoform	•	500	ug/kg
4-Methyl-2-Pentanone	•;	5,000	ug/kg
2-Hexanone	<	5,000	ug/kg
Tetrachloroethene	<	500	ug/kg
1,1,2,2-Tetrachloroethane	4	500	ug/kg
Toluene	•:	500	ug/kg
Chlorobenzene	<	500	ug/kg
Ethylbenzene	<.	500	ug/kg
Styrene	**	500	ug/kg
Mylenes, total	* 1	£90	ug/kg
Surrogate Recoveries			20 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Toluene-d _a			55 -1 11
4-Bromofluorobenzene	2.4 3.4		60-101
1,2-Dichloroethane-i,	3.1		- 12 m
a, a beometra ag	. •	•	

^{*} Detected below reporting limit; quantitation may be unreliable. K = Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.9-46532-48-52H

A 6 10 11

Sample Type: Soil

VISTA Sample ID: 935805-005 Date Sampled : 01/28/93 Date Received: 01/29/93 Date Extracted: 02/11/93 Date Analyzed: 02/13/93

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
Phenol	<	330	ug/kg
Bis(2-Chloroethyl) Ether	<	330	ug/kg
2-Chlorophenol	<	330	ug/kg
1,3-Dichlorobenzene	<	330	ug/kg
1,4-Dichlorobenzene	<	330	ug/kg
Benzyl Alcohol	< .	660	ug/kg
1,2-Dichlorobenzene	<	330	ug/kg
2-Methylphenol	<	330	ug/kg
Bis(2-Chloroisopropyl) Ether	<	330	ug/kg
4-Methylphenol	<	330	ug/kg
N-Nitroso-di-n-propylamine	<	330	ug/kg
Hexachloroethane	<	330	ug/kg
Nitrobenzene	<	330	ug/kg
Isophorone	<	330	ug/kg
2-Nitrophenol	<	330	ug/kg
2,4-Dimethylphenol	<	330	ug/kg
Benzoic Acid	<	1,700	ug/kg
Bis(2-Chloroethoxy)methane	<	330	ug/kg
2,4-Dichlorophenol	<	330	ug/kg
1,2,4-Trichlorobenzene	<	330	ug/kg
Naphthalene	<	330	ug/kg
4-Chloroaniline	<	660	ug/kg
Hexachlorobutadiene	<	330	ug/kg
4-Chloro-3-methylphenol	<	660	ug/kg
2-Methylnaphthalene	<	330	ug/kg
Hexachlorocyclopentadiene	<	330	ug/kg
2,4,6-Trichlorophenol	<	330	ug/kg
2,4,5-Trichlorophenol	<	330	ug/kg
2-Chloronaphthalene	<	330	ug/kg
2-Nitroaniline	<	1,700	ug/kg
Dimethyl Phthalate	<	330	ug/kg
Acenaphthylene	<	330	ug/kg
3-Nitroaniline	<	1,700	ug/kg
Acenaphthene	<	330	ug/kg
2,4-Dinitrophenol	<	1,700	ug/kg
4-Nitrophenol	<	1,700	ug/kg
Dibenzofuran	<	330	ug/kg
D ADDITO E ME MII	•	, , ,	49/14

< = Compound not detected at or above the listed reporting limit.</p>

Semivolatile Organic Compounds - EPA Method 8270 continued

VISTA Sample ID: 935805-005

No a North a	Daguite	Reporting	Time date as
Analyte	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	330	ug/kg
2,6-Dinitrotoluene	<	330	ug/kg
Diethyl Phthalate	<	330	ug/kg
4-Chlorophenyl Phenyl Ether	<	330	ug/kg
Fluorene	<	330	ug/kg
4-Nitroaniline	<	1,700	ug/kg
4,6-Dinitro-2-methylphenol	<	1,700	ug/kg
N-Nitrosodiphenylamine	<	330	ug/kg
4-Bromophenyl Phenyl Ether	<	330	ug/kg
Hexachlorobenzene	<	330	ug/kg
Pentachlorophenol	<	1,700	ug/kg
Phenanthrene	<	330	ug/kg
Anthracene	<	330	ug/kg
Di-n-butyl Phthalate	<	330	ug/kg
Fluoranthene	<	330	ug/kg
Pyrene	<	330	ug/kg
Butylbenzyl Phthalate	.:	3 3 3	ug/kg
3,3'-Dichlorobenzidine	v.	<i>6</i> 6 0	ug/kg
Benzo(a)anthracene	•.	330	ug/kg
Bis(2-Ethylhexyl) Phthalate	.*	339	ug/kg
Chrysene	.;	330	ug/kg
Di-n-octyl Phthalate	<	330	ug/kg
Benzo(b)fluoranthene	₹.	330	ug/kg
Benzo(k)fluoranthene	•:	3 3 0	ug/kg
Benzo(a)pyrene	<	330	ug/kg
<pre>Indeno(1,2,3-cd)pyrene</pre>	. ;	300	ug/ka
Dibenz(a,h)anthracene	<	3 0 0	ug/kg
Benzo(g,h,i)perylene		330	ug/kg
Surrogate Recoveries			CC Limits
Nitrobenzene-d ₅	53	4	35-93
2-Fluorobiphenyl	8.4	हें हे	27-39
Terphenyl-d ₁₄	3.3		57-109
Phenol-d ₆	51		26-102
2-Fluorophenol	£ 9	2,	16-9"
2,4,6-Tribromophenol	*		10-101
-			

Sompound not detected at or above the listed reporting limit.

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech

Client Sample ID: 18.10-46532-4S-S2L

VISTA Sample ID: 935805-006

Sample Type: Soil Date Sampled: 01/28/93 Date Received: 01/29/93 Date Analyzed: 02/09/93

Date Extracted: 02/09/93

Reporting Limit **Analyte** Result <u>Units</u> TRPH 40 < mg/kg

< = Compound not detected at or above the listed reporting limit.</p>

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.10-46532-4S-S2L

VISTA Sample ID: 935805-006 Sample Type: Soil Date Sampled: 01/28/93 Date Received: 01/ Date Extracted: 02/03/93

Date Received: 01/29/93 Date Analyzed: 02/03/93

<u>Analyte</u>	<u>Result</u>	Reporting Limit	<u>Units</u>
PCB-1016	<	3	mg/kg
PCB-1221	<	3	mg/kg
PCB-1232	<	2	mg/kg
PCB-1242	<	1	mg/kg
PCB-1248	<	1	mg/kg
PCB-1254	<	1	mg/kg
PCB-1260	<	1	mg/kg

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.10-46633-48-SLL

VISTA Sample ID: 935805-006 Sample Type: Soil
Date Sampled: 01/28/93 Date Received: 01/29/93

Date Analyzed: 02/10/93

Analyte	Result	Reporting Limit	<u>Units</u>
maryes	1,00010	<u> Dimit</u>	CITTOD
Chloromethane	<	1,000	ug/kg·
Bromomethane	<	1,000	ug/kg
Vinyl Chloride	<	1,000	ug/kg
Chloroethane	<	1,000	ug/kg
Methylene Chloride	<	500	ug/kg
Acetone	(580) *	10,000	ug/kg
Carbon Disulfide	` <	500	ug/kg
1,1-Dichloroethene	(140) *	500	ug/kg
1,1-Dichloroethane	` <	500	ug/kg
1,2-Dichloroethenes, total	<	500	ug/kg
Chloroform	<	500	ug/kg
1,2-Dichloroethane	<	500	ug/kg
2-Butanone	<	10,000	ug/kg
1,1,1-Trichloroethane	6,700	500	ug/kg
Carbon Tetrachloride		500	ug/kg
Vinyl Acetate	< *	5,000	ug/kg
Bromodichloromethane	<u>,</u>	500	ug/kg
1,2-Dichloropropane	<	500	ug/kg
Trans-1,3-Dichloropropene	<	500	ug/kg
Trichloroethene	<.	500	ug/kg
Dibromochloromethane	•	50C	ug/kg
1,1,2-Trichloroethane	<	500	ug/kg
Benzene	<	500	ug/kg
Cis-1,3-Dichloropropene	<	500	ug/kg
2-Chloroethyl Vinyl Ether	<	1,000	ug/kg
Bromoform	<	500	ug/kg
4-Methyl-2-Pentanone	ζ.	5,000	ug/kg
2-Hexanone	· <	5,000	ug/kg
Tetrachloroethene	<	500	ug/kg
1,1,2,2-Tetrachloroethane	<	500	ug/kg ug/kg
Toluene	·	500	ug/kg
Chlorobenzene	· ·	50C	ug/ka ug/ka
Ethylbenzene	×.	599 599	
-	**	500	ug/kg
Styrene .	`. •	500	ug, kg
Mylenes, total	•	2 1/3	ug, kg
Surrogate Recoveries			20 Limits
Toluene-d ₈	11.3	§	86-130
4-Bromofluoropenzene	109 119		66 -1 34
1,1-Dichloroethane-d4	103	÷	59+107
•			

^{*} Detected below reporting limit; quantitation may be unreliable. - Tompound not detected at or applies the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.10-46532-4S-S2L

VISTA Sample ID: 935805-006 Sample Type: Soil
Date Sampled: 01/28/93 Date Received: 01/29/93 Date Sampled : 01/28/93
Date Extracted: 02/11/93 Date Analyzed: 02/13/93

<u>Analyte</u>	<u>Res</u> ult	Reporting Limit	<u>Units</u>
Andryce	ACSUIC	LIMIC	<u>onres</u>
Phenol	<	330	ug/kg
Bis(2-Chloroethyl) Ether	<	330	ug/kg
2-Chlorophenol	<	330	ug/kg
1,3-Dichlorobenzene	<	330	ug/kg
1,4-Dichlorobenzene	<	330	ug/kg
Benzyl Alcohol	<	660	ug/kg
1,2-Dichlorobenzene	<	330	ug/kg
2-Methylphenol	<	330	ug/kg
Bis(2-Chloroisopropyl) Ether	<	330	ug/kg
4-Methylphenol	<	330	ug/kg
N-Nitroso-di-n-propylamine	<	330	ug/kg
Hexachloroethane	<	330	ug/kg
Nitrobenzene	<	330	ug/kg
Isophorone	<	330	ug/kg
2-Nitrophenol	<	330	ug/kg
2,4-Dimethylphenol	<	333	ug/kg
Benzoic Acid	<	1,700	ug/kg
Bis(2-Chloroethoxy) methane	<	330	ug/kg
2,4-Dichlorophenol	<	330	ug/kg
1,2,4-Trichlorobenzene	<	330	ug/kg
Naphthalene	<	330	ug/kg
4-Chloroaniline	**	660	ug/kg
Hexachlorobutadiene	< ,	330	ug/kg
4-Chloro-3-methylphenol	<	660	ug/kg
2-Methylnaphthalene	<	330	ug/kg
Hexachlorocyclopentadiene	<	330	ug/kg
2,4,6-Trichlorophenol	<	339	ug/kg
2,4,5-Trichlorophenol	<	330	ug/kg
2-Chloronaphthalene	<	000	ug/kg
2-Nitroaniline	<	1,700	ug/kg
Dimethyl Phthalate	<	300	ug/kg
Acenaphthylene	<	333	ug/kg
3-Nitroaniline	σ <u>*</u>	: :	ug/kg
Acenaphthene	' .	3 2 2	ig, kg
2,4-Dinitrophenol	<		ug/kg
4-Nitrophenol	<i>*</i> C	1,711	ug kg
Dibenzofuran	·\$.	330	ugickg

< = Compound not detected at or above the listed reporting limit.</p>

Semivolatile Organic Compounds - EPA Method 8270 sontinued)

VISTA Sample ID: 935805-306

			
		Reporting	
Analyte	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	330	ug/kg
2,6-Dinitrotoluene	<	330	ug/kg
Diethyl Phthalate	<	330	ug/kg
4-Chlorophenyl Phenyl Ether	<	330	ug/kg
Fluorene	<	330	ug/kg
4-Nitroaniline	<	1,700	ug/kg
4,6-Dinitro-2-methylphenol	<	1,700	ug/kg
N-Nitrosodiphenylamine	<	330	ug/kg
4-Bromophenyl Phenyl Ether	<	330	ug/kg
Hexachlorobenzene	<	330	ug/kg
Pentachlorophenol	<	1,700	ug/kg
Phenanthrene	<	330	ug/kg
Anthracene	<	330	ug/kg
Di-n-butyl Phthalate	<	330	ug/kg
Fluoranthene	<	330	ug/kg
Pyrene	<	330	ug/kg
Butylbenzyl Phthalate	<	330	ug/kg
3,3'-Dichlorobenzidine	<	660	ug/kg
Benzo(a) anthracene	<	330	ug/kg
Bis(2-Ethylhexyl) Phthalate	<	330	ug/kg
Chrysene	<	330	ug/kg
Di-n-octyl Phthalate	<	330	ug/kg
Benzo(b) fluoranthene	<	330	ug/kg
Benzo(k)fluoranthene	<	330	ug/kg
Benzo(a) pyrene	<	330	ug/kg
Indeno(1,2,3-cd)pyrene	. <	330	ug/kg
Dibenz(a,h)anthracene	<	330	ug/kg
Benzo(g,h,i)perylene	<	330	ug/kg
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	68	3	35-93
2-Fluorobiphenyl	63	<i>\text{k}</i>	37 - 99
Terphenyl-d ₁₄	92	\$	57-109
Phenol-d ₆	55	2	26-102
2-Fluorophenol	55	1,	16-9"
2,4,6-Tribromophenol	7.5	† 2	10-101
•	_	-	

< = Compound not detected at or above the listed reporting limit.

Simulated Distillation/Total Petroleum Hydrocarbons GC/FID - ASTM D2887/CDHS Method

Client: Soil Tech

Client Sample ID: 18.67-46532-35-11(0)
VISTA Sample ID: 935805-007 Upper Sample Type: Waste

Date Sampled: 01/28/93 Date Extracted: 02/08/93 Date Received: 01/29/93 Date Analyzed: 02/10/93

Hydrocarbon - Boiling Point	<pre>3 Eluting</pre>
C ₇ - 98°C C ₈ - 126°C C ₉ - 151°C C ₁₀ - 174°C	0 % 9 % 29 %
C ₁₁ - 196°C C ₁₂ - 216°C	48 % 66 % 79 %
$C_{16}^{74} - 287^{\circ}C$ $C_{18} - 316^{\circ}C$	39 8 93 8 95 8
C ₂₀ - 344°C C ₂₄ - 391°C C ₂₈ - 431°C C ₃₂ - 466°C C ₃₆ - 496°C	96 8 100 9 100 9
C ₃₆ - 496°C C ₄₀ - 522°C C ₄₄ - 545°C	100 % 100 % 100 %

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.67-46532-3S-L1(0)

VISTA Sample ID: 935805-007 Upper Sample Type: Waste

Date Sampled: 01/28/93
Date Extracted: 02/03/93

Date Received: 01/29/93 Date Analyzed: 02/04/93

Analyte	<u>Result</u>	Reporting Limit	<u>Units</u>
PCB-1016	<	300	mg/kg
PCB-1221	<	300	mg/kg
PCB-1232	<	200	mg/kg
PCB-1242	<	100	mg/kg
PCB-1248	2,500	100	mg/kg
PCB-1254	<	100	mg/kg
PCB-1260	<	100	mg/kg

< = Compound not detected at or above the listed reporting limit.</p>

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.67-46532-38-L1(W) VISTA Sample ID: 935805-007 Lower Sample Type: Waste

Date Sampled: 01/28/93 Date Extracted: 02/03/93

Date Received: 01/29/93 Date Analyzed: 02/04/93

Analyte	Result	Reporting Limit	<u>Units</u>
PCB-1016	<	30	mg/kg
PCB-1221	<	30	mg/kg
PCB-1232	<	20	mg/kg
PCB-1242	<	10	mg/kg
PCB-1248	69	10	mg/kg
PCB-1254	<	10	mg/kg
PCB-1260	<	10	mg/kg

< = Compound not detected at or approximation limit.</p>

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 13.67-46532-08-11

VISTA Sample ID: 935805-007 Sample Type: Waste Date Sampled: 01/28/93 Date Analyzed: 02/11/93

<u>Analyte</u>	<u>Result</u>	Reporting Limit	l'nita
Andryce	<u>Result</u>	LIMIC	<u>Units</u>
Chloromethane	<	5,000	mg/kg
Bromomethane	<	5,000	mg/kg
Vinyl Chloride	<	5,000	mg/kg
Chloroethane	<	5,000	mg/kg
Methylene Chloride	11,000	2,500	mg/kg
Acetone	800,000	50,000	mg/kg
Carbon Disulfide	<	2,500	mg/kg
1,1-Dichloroethene	(1,500)*	2,500	mg/kg
1,1-Dichloroethane	4,700	2,500	mg/kg
1,2-Dichloroethenes, total	<	2,500	mg/kg
Chloroform	<	2,500	mg/kg
1,2-Dichloroethane	30,000	2,500	mg/kg
2-Butanone	390,000	50,000	mg/kg
1,1,1-Trichloroethane	12,000	2,500	mg/kg
Carbon Tetrachloride	<	2,500	mg/kg
Vinyl Acetate	<	25,000	mg/kg
Bromodichloromethane	< .	2,500	mg/kg
1,2-Dichloropropane	<	2,500	mg/kg
Trans-1,3-Dichloropropene	<	2,500	mg/kg
Trichloroethene	7,000	2,500	mg/kg
Dibromochloromethane	<	2,500	mg/kg
1,1,2-Trichloroethane	<	2,500	mg/kg
Benzene	21,000	2,500	mg/kg
Cis-1,3-Dichloropropene	<	2,500	mg/kg
2-Chloroethyl Vinyl Ether	<	5,000	mg/kg
Bromoform	<	2,500	mg/kg
4-Methyl-2-Pentanone	(3,500)*	25,000	mg/kg
2-Hexanone	<	25,000	mg/kg
Tetrachloroethene	7,200	2,500	mg/kg
1,1,2,2-Tetrachloroethane	<	2,500	mg/kg
Toluene	5,400	2,500	mg/kg
Chlorobenzene	<	2,500	mg/kg
Ethylbenzene	(950)★	2,500	mg/kg
Styrene	(1,700)*	2,500	mg/kg
Xylenes, total	5,600	2,500	mg/kg
Surrogate Recoveries			co Limita
Toluene-d _s	107	े हे	65-130
4-Bromofluorobenzene	99		55-104
1,2-Dichlorcethane-d.	94	;	59-127
•			,

NA = Not Applicable

Compound not detected at or above the lister reportion . - -.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.67-46532-38-11(0)

VISTA Sample ID: 935805-007 Upper Sample Type: Waste

Date Sampled: 01/28/93 Date Received: 01/29/93 Date Extracted: 02/03/93 Date Analyzed: 02/04/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
Phenol	1,600	100	mg/kg
Bis(2-Chloroethyl) Ether	430	100	mg/kg
2-Chlorophenol	<	100	mg/kg
1,3-Dichlorobenzene	<	100	mg/kg
1,4-Dichlorobenzene	<	100	mg/kg
Benzyl Alcohol	(530) *	2,000	mg/kg
1,2-Dichlorobenzene	170	100	mg/kg
2-Methylphenol	360	100	mg/kg
Bis(2-Chloroisopropyl) Ether	<	100	mg/kg
4-Methylphenol	480	100	mg/kg
N-Nitroso-di-n-propylamine	•′,	100	mg/kg
Hexachloroethane	Ç	100	mg/kg
Nitrobenzene	v.;	100	mg/kg
Isophorone	933	100	mg/kg
2-Nitrophenol	₹\$1;	100	mg/kg
2,4-Dimethylphenol	•	100	mg/kg
Benzoic Acid	11,900)*	5,000	mg/kg
Bis(2-Chloroethoxy)methane	€.	100	mg/kg
2,4-Dichlorophenol	• .*	100	mg/kg
1,2,4-Trichlorobenzene	·;	100	mg/kg
Naphthalene	·	1,000	mg/kg
4-Chloroaniline	•	200	mg/kg
Hexachlorobutadiene	•	100	mg/kg
4-Chloro-3-methylphenol	*	200	mg/kg
2-Methylnaphthalene	840	100	mg/kg
Hexachlorocyclopentadiene	<.	100	mg/kg
2,4,6-Trichlorophenol	<	100	mg/kg
2,4,5-Trichlorophenol	×.	100	mg/kg
2-Chloronaphthalene	<.	100	mg/kg
2-Nitroaniline	<	500	mg/kg
Dimethyl Phthalate	- 69 j *	100	mg/kg
Acenaphthylene	133. •	100	mg/kg
3-Nitroaniline	· .	510	mg/kg
Acenaphthene	. 2	110	ng/kg
2,4-Dinitrophenol	•:	500	ng, kg
4-Nitrophenol	•:	500	mg/kg
Dibenzofuran		100	mg/ka
			** ***

< = Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270 osntīnuei

VISTA Sample ID: 935805-007 Upper

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	100	mg/kg
2,6-Dinitrotoluene	<	100	mg/kg
Diethyl Phthalate	<	100	mg/kg
4-Chlorophenyl Phenyl Ether	<	100	mg/kg
Fluorene	(36) *	100	mg/kg
4-Nitroaniline	<	500	mg/kg
4,6-Dinitro-2-methylphenol	<	500	mg/kg
N-Nitrosodiphenylamine	<	100	mg/kg
4-Bromophenyl Phenyl Ether	<	100	mg/kg
Hexachlorobenzene	<	100	mg/kg
Pentachlorophenol	<	500	mg/kg
Phenanthrene	(44) *	100	mg/kg
Anthracene	(14) *	100	mg/kg
Di-n-butyl Phthalate	290	100	mg/kg
Fluoranthene	<	100	mg/kg
Pyrene	(14) *	100	mg/kg
Butylbenzyl Phthalate	(49) *	100	mg/kg
3,3'-Dichlorobenzidine	<	200	m g/k g
Benzo(a)anthracene	<	100	mg/kg
Bis(2-Ethylhexyl) Phthalate	1,300	100	mg/kg
Chrysene	120	100	mg/kg
Di-n-octyl Phthalate	(11) ★	100	mg/kg
Benzo(b) fluoranthene	<	100	mg/kg
Benzo(k)fluoranthene	<	100	mg/kg
Benzo(a)pyrene	•;	100	mg/kg
<pre>Indeno(1,2,3-cd)pyrene</pre>	<	100	mg/kg
Dibenz(a,h)anthracene	<	100	mg/kg
Benzo(g,h,i)perylene	<.	100	mg/kg
Surrogate Recoveries			<u>QC Limits</u>
Nitrobenzene-d _s	196	· · · · · · · · · · · · · · · · · · ·	32-118
2-Fluorobiphenyl	- + + T	ignormal de la companya de la compan	27-114
Terphenyl-d ₁₄	123	3	44-131
Phenol-d ₆	127	:	33-121
2-Fluorophenol	9.5	•	10-141
2,4,6-Tribromophenol	100		15~124

^{*} Detected below reporting limit; quantitation may be unreliable. < = Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.67-46502-03-L1(W) VISTA Sample ID: 935805-007 Lower Sample Type: Waste

Date Sampled: 01/28/93 Date Received: 01/29/93 Date Extracted: 02/03/93 Date Analyzed: 02/04/93

<u>Analyte</u>	Result	Reporting <u>Limit</u>	<u>Units</u>
Phenol	740	100	mg/kg ·
Bis(2-Chloroethyl) Ether	(41) *	100	mg/kg
2-Chlorophenol	<	100	mg/kg
1,3-Dichlorobenzene	<	100	mg/kg
1,4-Dichlorobenzene	<	100	mg/kg
Benzyl Alcohol	(83) *	200	mg/kg
1,2-Dichlorobenzene	<	100	mg/kg
2-Methylphenol	(41)*	100	mg/kg
Bis(2-Chloroisopropyl) Ether	<	100	mg/kg
4-Methylphenol	(87) *	100	mg/kg
N-Nitroso-di-n-propylamine	<	109	mg/kg
Hexachloroethane	.*	100	mg/kg
Nitrobenzene	<	100	mg/kg
Isophorone	(01)*	100	mg/kg
2-Nitrophenol	• .	100	mg/kg
2,4-Dimethylphenol	•*,	100	mg/kg
Benzoic Acid	450	500	mg/kg
Bis(2-Chloroethoxy) methane	<	100	mg/kg
2,4-Dichlorophenol	•<	100	mg/kg
1,2,4-Trichlorobenzene	•	100	mg/kg
Naphthalene	17) *	100	mg/kg
4-Chloroaniline		200	mg/kg
Hexachlorobutadiene		100	mg/kg
4-Chloro-3-methylphenol	•,	200	mg/kg
2-Methylnaphthalene	-0,	100	mg/kg
Hexachlorocyclopentadiene		100	mg/kg
2,4,6-Trichlorophenol		100	mg/kg
2,4,5-Trichlorophenol		100	mg/kg
2-Chloronaphthalene	<.	100	mg/kg
2-Nitroaniline	٠,	500	mg/kg
Dimethyl Phthalate	.*	100	mg/kg
Acenaphthylene	*	100	mg/kg
3-Nitroaniline		# 3 3	mg/kg
Acenaphthene		* * *	ng/kg
2,4-Dinitrophenol		5.10	mg/kg
4-Nitrophenol	٠.	60 ¹	mg/kg
Dibenzofuran		* * *	ng, kg
		- · ·	**************************************

^{*} Detected below reporting limit; quantitation may be unreliable. < = Compound not detected at or above the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270 .continued:

VISTA Sample ID: 935805-007 Lower

		Reporting	í
Analyte	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	100	mg/kg
2,6-Dinitrotoluene	<	100	mg/kg
Diethyl Phthalate	<	100	mg/kg
4-Chlorophenyl Phenyl Ether	<	100	mg/kg
Fluorene	<	100	mg/kg
4-Nitroaniline	<	500	mg/kg
4,6-Dinitro-2-methylphenol	<	500	mg/kg
N-Nitrosodiphenylamine	<	100	mg/kg
4-Bromophenyl Phenyl Ether	<	100	mg/kg
Hexachlorobenzene	<	100	mg/kg
Pentachlorophenol	<	500	mg/kg
Phenanthrene	<	100	mg/kg
Anthracene	<	100	mg/kg
Di-n-butyl Phthalate	<	100	mg/kg
Fluoranthene	<	100	mg/kg
Pyrene	<	100	mg/kg
Butylbenzyl Phthalate	<u> </u>	100	mg/kg
3,3'-Dichlorobenzidine	<	200	mg/kg
Benzo(a) anthracene	<	100	mg/kg
Bis(2-Ethylhexyl) Phthalate	(29)*	100	mg/kg
Chrysene	<	100	mg/kg
Di-n-octyl Phthalate	<	100	mg/kg
Benzo(b) fluoranthene	<	100	mg/kg
Benzo(k) fluoranthene	<	100	mg/kg
Benzo(a) pyrene	<	100	mg/kg
Indeno(1,2,3-cd)pyrene	<	100	mg/kg
Dibenz(a,h)anthracene	<	100	mg/kg
Benzo(g,h,i)perylene	<	100	mg/kg
20 (4,, 1, 502) 20		200	9) 7.9
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	114 %		32-118
2-Fluorobiphenyl	121		27-114
Terphenyl-d,	136	:	44-131
Phenol-d ₆	99 3		35-151
2-Fluorophenol	99 3 103 3		13-141
2,4,5-Tribromophenol	112		13-13

^{*} Detected below reporting limit; quantitation may be unraliable. < = Compound not detected at or above the listed reporting limit.

Simulated Distillation/Total Petroleum Hydrocarbons GC/FID - ASTM D2887/CDHS Method

Client: Soil Tech

Client Sample ID: 18.910-46532-4S-L1(W)

VISTA Sample ID: 935805-008 Lower Sample Type: Waste

Date Sampled: 01/28/93

Date Received: 01/29/93

Date Extracted: 02/08/93

Date Analyzed: 02/10/93

Hydrocarbon - Boiling Point	रे Eluting
C ₇ - 98°C	0 %
C ₈ - 126°C	1 %
C ₈ - 126°C C ₉ - 151°C	2 %
C ₁₀ - 174°C	14 %
C ₁₁ - 196°C	18 %
C ₁₂ - 216°C	20 કે
C ₁₂ - 216°C C ₁₄ - 254°C	97 %
C ₁₆ - 287°C	98 %
C ₁₈ - 316°C	99 %
C ₂₀ - 344°C	99 3
C ₂₄ - 391°C	100 %
C ₂₈ - 431°C	100 %
C ₃₂ - 466°C	100 %
C ₃₆ - 496°C	100 }
C ₄₀ - 522°C	100 %
C4 545°C	100 %

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.910-46532-45-L1(0)

VISTA Sample ID: 935805-008 Upper Sample Type: Waste

Date Sampled: 01/28/93 Date Extracted: 02/03/93 Date Received: 01/29/93 Date Analyzed: 02/04/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
PCB-1016	<	3	mg/kg
PCB-1221	<	3	mg/kg
PCB-1232	<	2	mg/kg
PCB-1242	<	1	mg/kg
PCB-1248	<	1	mg/kg
PCB-1254	<	1	mg/kg
PCB-1260	<	1	mg/kg

< = Compound not detected at or above the listed reporting limit.</p>

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech

Client Sample ID: 18.910-46532-4S-L1(W)

VISTA Sample ID: 935805-008 Lower Sample Type: Waste Date Sampled: 01/28/93 Date Extracted: 02/03/93 Date Analyzed: 02/04/93

Analyte	<u>Result</u>	Reporting Limit	<u>Units</u>
PCB-1016	<	300	mg/kg
PCB-1221	<	300	mg/kg
PCB-1232	<	200	mg/kg
PCB-1242	<	100	mg/kg
PCB-1248	330	100	mg/kg
PCB-1254	<	100	mg/kg
PCB-1260	<.	100	mg/kg

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.910-46532-48-L1(0)

VISTA Sample ID: 935805-008 Upper Sample Type: Waste

Date Sampled: 01/28/93 Date Received: 01/29/93

Date Analyzed: 02/10/93

No Supe	Danila	Reporting	Thurst design
Analyte	Result	<u>Limit</u>	<u>Units</u>
Chloromethane	<	5,000	mg/kg
Bromomethane	<	5,000	mg/kg
Vinyl Chloride	<	5,000	mg/kg
Chloroethane	<	5,000	mg/kg
Methylene Chloride	<	2,500	mg/kg
Acetone	(32,000) *	50,000	mg/kg
Carbon Disulfide	`	2,500	mg/kg
1,1-Dichloroethene	<	2,500	mg/kg
1,1-Dichloroethane	<	2,500	mg/kg
1,2-Dichloroethenes, total	<	2,500	mg/kg
Chloroform	<	2,500	mg/kg
1,2-Dichloroethane	<	2,500	mg/kg
2-Butanone	<	50,000	mg/kg
1,1,1-Trichloroethane	19,000	2,500	mg/kg
Carbon Tetrachloride	₹,	2,500	mg/kg
Vinyl Acetate	<	25,000	mg/kg
Bromodichloromethane	٠,	2,500	mg/kg
1,2-Dichloropropane	<	2,500	mg/kg
Trans-1,3-Dichloropropene	<	2,500	mg/kg
Trichloroethene	<	2,500	mg/kg
Dibromochloromethane	<	2,500	mg/ka
1,1,2-Trichloroethane	<	2,500	mg/kg
Benzene	<	2,500	mg/kg
Cis-1,3-Dichloropropene	₹.	2,500	mg/kg
2-Chloroethyl Vinyl Ether	<	5,000	mg/kg
Bromoform	<	2,500	mg/kg
4-Methyl-2-Pentanone	<	25,000	mg/kg
2-Hexanone	<	25,000	mg/kg
Tetrachloroethene	<	2,500	mg/kg
1,1,2,2-Tetrachloroethane	•<	2,500	mg/kg
Toluene	<	2,500	mg/kg
Chlorobenzene	<	2,500	mg/kg
Ethylbenzene	<	2,500	mg/kg
Styrene	<.	2,500	mg, kg
Xylenes, total	<	0,600	mg ka
Surrogate Recoveries			20.11.11.50
Toluene-d ₈	135		5 f = 100
4-Bromofluorobenzene	11.		55-134
1,2-Dichloroethane-d;	108	÷.	8 4 - 200

^{*} Detected below reporting limit; quantitation may be unreliable. \sim Compound not detected at all above the limits reporting for the

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech

Client Sample ID: 18.910-46532-48-L1(W)

VISTA Sample ID: 935805-008 Lower Sample Type: Waste

Date Sampled: 01/28/93 Date Analyzed: 02/10/93 Date Received: 01/29/93

······································			
No a look a	D 1 -	Reporting	
<u>Analyte</u>	Result	<u>Limit</u>	<u>Units</u>
Chloromethane	<	5,000	mg/kg
Bromomethane	<	5,000	mg/kg
Vinyl Chloride	<	5,000	mg/kg
Chloroethane	<	5,000	mg/kg
Methylene Chloride	<	2,500	mg/kg
Acetone	(16,000)*	50,000	mg/kg
Carbon Disulfide	`	2,500	mg/kg
1,1-Dichloroethene	(700) *	2,500	mg/kg
1,1-Dichloroethane	` <	2,500	mg/kg
1,2-Dichloroethenes, total	<	2,500	mg/kg
Chloroform	<	2,500	mg/kg
1,2-Dichloroethane	<	2,500	mg/kg
2-Butanone	<;	50,000	mg/kg
1,1,1-Trichloroethane	11,000	2,500	mg/kg
Carbon Tetrachloride	-<	2,500	mg/kg
Vinyl Acetate	**	25,000	mg/kg
Bromodichloromethane	, ,	2,500	mg/kg mg/kg
1,2-Dichloropropane	• ;	2,500	mg/kg
Trans-1,3-Dichloropropene	<	2,500	mg/kg
Trichloroethene	€,	2,500	mg/kg
Dibromochloromethane	<	2,500	mg/kg
1,1,2-Trichloroethane	₹,	2,500	mg/kg
Benzene	9,500	2,500	mg/kg
Cis-1,3-Dichloropropene	•	2,500	
2-Chloroethyl Vinyl Ether		5,000	ng/kg mg/kg
Bromoform		2,500	mg/kg
4-Methyl-2-Pentanone	<u>.</u>	25,000	mg/kg
2-Hexanone	ζ.	25,000	mg/kg
Tetrachloroethene		2,500	mg/kg
1,1,2,2-Tetrachloroethane		2,500	mg/kg
Toluene	*	3,500	mg/kg
Chlorobenzene	<i></i>	2,500	mg/kg
Ethylbenzene	· · · · · · · · · · · · · · · · · · ·	0,000	mg/kg
Styrene		0,500	mg/kg
Mylenes, total	, `;)	2,530	ng/ka
A: Tenes, Cour		a,£10	ng/hq
<u>Surrogate Recoveries</u>			20 14-511-3
Toluene-d _a	• • •	:	55−100
4-Bromofluorobensene	• • •	,	56-134
1,2-Dichloroethane-d4			59-207

^{*} Detected below reporting limit; quantitation may be unrellable. Section of the content of an or arove the listed reporting the permitting the

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.910-46532-45-L1(0) VISTA Sample ID: 935805-008 Upper Sample Type: Waste

Date Sampled: 01/28/93 Date Received: 01/29/93 Date Extracted: 02/03/93 Date Analyzed: 02/04/93

<u>Analyte</u>	Result	Reporting <u>Limit</u>	<u>Units</u>
Phenol	290	100	mg/kg
Bis(2-Chloroethyl) Ether	<	100	mg/kg
2-Chlorophenol	<	100	mg/kg
1,3-Dichlorobenzene	<	100	mg/kg
1,4-Dichlorobenzene	<	100	mg/kg
Benzyl Alcohol	<	200	mg/kg
1,2-Dichlorobenzene	<	100	mg/kg
2-Methylphenol	<	100	mg/kg
Bis(2-Chloroisopropyl) Ether	<	100	mg/kg
4-Methylphenol	<	100	mg/kg
N-Nitroso-di-n-propylamine	<	100	mg/kg
Hexachloroethane	<	100	mg/kg
Nitrobenzene	<	100	mg/kg
Isophorone	140	100	mg/kg
2-Nitrophenol	<	100	mg/kg
2,4-Dimethylphenol	S	100	mg/kg
Benzoic Acid	* <u>(</u>	500	mg/kg
Bis(2-Chloroethoxy) methane	<	130	m g/k g
2,4-Dichlorophenol	<	100	mg/kg
1,2,4-Trichlorobenzene	<.	100	m g /kg
Naphthalene	•*	100	mg/kg
:-Chloroaniline	' ,	200	m g/k g
Hexachlorobutadiene	*	100	m g /kg
4-Chloro-3-methylphenol	<	200	mg/kg
2-Methylnaphthalene	<	100	mg/kg
Hexachlorocyclopentadiene	•<	190	mg/kg
2,4,6-Trichlorophenol	<	100	mg/kg
2,4,5-Trichlorophenol	<	100	mg/hg
2-Chloronaphthalene	<	100	mg/kg
2-Nitroaniline	<	500	mg/kg
Dimethyl Phthalate	<	100	mg/kg
Acenaphthylene	<	100	mg/kg
3-Mitroaniline	<	500	mg/kg
Acenaphthene	• .	1.00	mg/kg
2,4-Dinitrophenol	<.	500	mg/kg
4-Witrophenol	· ·	500	mg/kg
Dibenzofuran	• *	100	mg,kq

Semivolatile Organic Compounds - EPA Method 8270 continue:

VISTA Sample ID: 935805-008 Upper

Analyte	Recult	Reporting Limit	
And Ty Ce	<u> </u>	Limite	<u>Units</u>
2,4-Dinitrotoluene	<	100	mg/kg
2,6-Dinitrotoluene	<	100	mg/kg
Diethyl Phthalate	<	100	mg/kg
4-Chlorophenyl Phenyl Ether	<	100	mg/kg
Fluorene	<	100	mg/kg
4-Nitroaniline	<	500	mg/kg
4,6-Dinitro-2-methylphenol	<	500	mg/kg
N-Nitrosodiphenylamine	<	100	mg/kg
-Bromophenyl Phenyl Ether	<	100	mg/kg
<pre>fexachlorobenzene</pre>	<	100	mg/kg
Pentachlorophenol	<	500	mg/kg
Phenanthrene	<	100	mg/kg
inthracene	<	100	mg/kg
Di-n-butyl Phthalate	<	100	mg/kg
luoranthene	*.	100	mg/kg
yrene	• .	100	mg/kg
Sutylbenzyl Phthalate	»;	100	mg/kg
,3'-Dichlorobenzidine	S \$	200	mg/kg
enzo(a)anthracene	<u>:</u>	100	mg/kg
is(2-Ethylhexyl) Phthalate	-\$	100	mg/kg
hrysene	* ;	100	mg/kg
i-n-octyl Phthalate	<,	100	mg/kg
enzo(b)fluoranthene	<<	100	mg/kg
enzo(k)fluoranthene	<*	100	mg/kg
enzo(a)pyrene	•*	100	mg/kg
ndeno(1,2,3-cd)pyrene	•	100	mg/kg
ibenz(a,h)anthracene	•	100	ma/ka
enzo(g,h,i)perylene		100	mg/kg
urrogate Recoveries			QC Limits
itrobenzene-d ₅			32-118
-Fluorobiphenyl	118	3	27-114
erphenyl-d ₄	131	#	44-101
henol-d _s	24	,	32-121
-Fluorophenol	: E	•	10-141
.i,d-Tribromophenol			16-106

c = Compound not detected at or acove the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: 18.910-46532-4S-L1(W)

VISTA Sample ID: 935805-008 Lower Sample Type: Waste

Date Sampled: 01/28/93 Date Received: 01/29/93 Date Extracted: 02/03/93 Date Analyzed: 02/04/93

		Reporting	
Analyte	<u>Result</u>	Limit	<u> Units</u>
Phenol	1,600	100	mg/kg
Bis(2-Chloroethyl) Ether	<	100	mg/kg
2-Chlorophenol	<	100	mg/kg
1,3-Dichlorobenzene	<	100	mg/kg
1,4-Dichlorobenzene	<	100	mg/kg
Benzyl Alcohol	<	200	mg/kg
1,2-Dichlorobenzene	<	100	mg/kg
2-Methylphenol	<	100	mg/kg
Bis(2-Chloroisopropyl) Ether	<	100	mg/kg
4-Methylphenol	<	100	mg/kg
N-Nitroso-di-n-propylamine	<	100	mg/kg
Hexachloroethane	<	100	mg/kg
Nitrobenzene	<	100	mg/kg
Isophorone	4,300	1,000	mg/kg
2-Nitrophenol	<	100	mg/kg
2,4-Dimethylphenol	<	100	mg/kg
Benzoic Acid	(360)*	500	mg/kg
Bis(2-Chloroethoxy) methane	<	10C	mg/kg
2,4-Dichlorophenol	<	100	mg/kg
1;2,4-Trichlorobenzene	<	100	mg/kg
Naphthalene	850	100	mg/kg
4-Chloroaniline	<	200	mg/kg
Hexachlorobutadiene	<	100	mg/kg
4-Chloro-3-methylphenol	<	200	mg/kg
2-Methylnaphthalene	210	100	mg/kg
Hexachlorocyclopentadiene	<	100	mg/kg
2,4,6-Trichlorophenol	<	100	mg/kg
2,4,5-Trichlorophenol	<	100	mg/kg
2-Chloronaphthalene	150) *	100	mg/kg
2-Nitroaniline	<	500	mg/kg
Dimethyl Phthalate	<	100	mg/kg
Acenaphthylene	<	100	mg/kg
3-Nitroaniline	<	500	mg/kg
Acenaphthene	120	- 0.2	ng/kg
2,4-Dinitrophenol	<	500	ng,ka
4-Nitrophenol	<	502	mg/kg
Dibenzofuran	770	1,000	ក់ផ្លូវជំនា

^{*} Detected below reporting limit; quantitation may be unreliable.

< = Compound not detected at or above the listed reporting limit.

Semivolatile Organic compounds - EPA Method 8270 continued

VISTA Sample ID: 935805-008 Lower

		Reporting	•
<u>Analyte</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>
2,4-Dinitrotoluene	•<	100	mg/kg
2,6-Dinitrotoluene	<;	100	mg/kg
Diethyl Phthalate	<	100	mg/kg
4-Chlorophenyl Phenyl Ether	<	100	mg/kg
Fluorene	110	100	mg/kg
4-Nitroaniline	<	500	mg/kg
4,6-Dinitro-2-methylphenol	<	500	mg/kg
N-Nitrosodiphenylamine	<	100	mg/kg
4-Bromophenyl Phenyl Ether	<	100	mg/kg
Hexachlorobenzene	<	100	mg/kg
Pentachlorophenol	<	500	mg/kg
Phenanthrene	130	100	mg/kg
Anthracene	(55) *	100	mg/kg
Di-n-butyl Phthalate	ે ર્	100	mg/kg
Fluoranthene	(90)★	100	mg/kg
Pyrene	(49)×	100	mg/kg
Butylbenzyl Phthalate	• •	100	mg/kg
3,31-Dichlorobenzidine	No.	200	mg/kg
Benzo(a) anthracene	(23) ₹	100	mg/kg
Bis(2-Ethylhexyl) Phthalate	2,200	1,000	mg/kg
Chrysene	(32)*	100	mg/kg
Di-n-octyl Phthalate	· · · · · ·	100	mg/kg
Benzo(b) fluoranthene	(14)*	100	mg/kg
Benzo(k) fluoranthene		100	ng/kg
Benzo(a)pyrene	· ·	loc .	mg/kg
Indeno(1,2,3-cd)pyrene	•	100	mg/kg
Dibenz(a,h)anthracene	• .	100	mg/kg
Benzo(g,h,i)perylene		100	mg/kg
20.130 (3/11/1/2011/101/10		¥ 0 4	
Surrogate Recoveries			oo timita
Witrobenzene-ds	126	Ž.	52 - 119
2-Fluorobiphenyl	1.35	§	07-11:
Terphenyl-d ₁₄		ફ	:
Phenol-d ₅	137	Š.	
2-Fluorophenol			: :-:::
2,4,6-Tribromophenol	* *** *** * *** **	•	
•			

⁷ Detected below reporting limit; quantitation may be unreliable
6 = Compound not detected at or above the listed reporting limit.

QUALITY ASSURANCE

Total Recoverable Petroleum Hydrocarbons EPA Method 418.1

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935805-Blank Sample Type: Soil Date Sampled: NA Date Received: NA

Date Extracted: 02/09/93

Date Analyzed: 02/09/93

	D	Reporting	
<u>Analyte</u>	<u>Result</u>	Limit	<u>Units</u>
TRPH	<	40	mg/kg

Quality Assurance Total Recoverable Petroleum Hydrocarbons - EPA Method 418.1 Matrix Spike Recovery and Precision

Client: Soil Tech

Client Sample ID: 18.9-46532-4S-S2H

VISTA Sample ID: 935805-005 Sample Type: Soil

Date Sampled : 01/28/93 Date Extracted: 02/09/93

Date Received: 01/29/93 Date Analyzed: 02/09/93

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS % Rec	.QC Limits <u>% Rec</u>
TRPH	500	ND	394	79	75-125
Compound	Spike Added (mg/kg)	MSD Conc. (mg/kg)	MSD 총 Rec	<u> 555</u>	QC Limits <u>RPD & Rs</u>
ТКРН	500	394	79	-	15 75-11

ND = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Quality Assurance Total Recoverable Petroleum Hydrocarbons - Method 418.1 Laboratory Control Sample

Client: Soil Tech

VISTA Sample ID: 935805-LCS

Date Extracted: 02/09/93 Date Analyzed: 02/09/93

Compound	True Value <u>(mg/kg)</u>	Sample Result (mg/kg)	% Rec	QC Limits <u>% Rec</u>
TRPH	500	397	79	75-125

Polychlorinated Biphenyls EPA Method 8080

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935805-Blank Date Sampled: NA

Date Extracted: 02/03/93

Sample Type: Soil Date Received: NA

Date Analyzed: 02/03/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
PCB-1016	<	0.10	mg/kg
PCB-1221	<	0.10	mg/kg
PCB-1232	<	0.07	mg/kg
PCB-1242	<	0.03	mg/kg
PCB-1248	<	0.03	mg/kg
PCB-1254	<	0.03	mg/kg
PCB-1260	<	0.03	mg/kg

NA = Not Applicable < = Compound not detected at or above the listed reporting limit.</p>

Quality Assurance Polychlorinated Biphenyls - EPA Method 8080 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA VISTA Sample ID: NA

Date Sampled : NA
Date Extracted: 02/03/93

Sample Type: Soil Date Received: NA

Date Analyzed: 02/03/93

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS % Rec	QC Limits <u>% Rec</u>
Aroclor 1254	0.167	7 ND	0.176	105	50-160

	Spike MS Added Co	SD onc. MSD		-	C its
Compound	(mg/kg) (mg	1/ka) 3 Rec	RPD	RPD	<u>2 Rec</u>
Aroclor 1254	0.167 0	184 110	5	38	50-10.

NA = Not Applicable ND = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Quality Assurance Polychlorinated Biphenyls - EPA Method 8080 Matrix Spike Recovery and Precision

Client: Soil Tech

VISTA Sample ID: 935805-LCS

Date Extracted: 02/03/93

Date Analyzed: 02/03/93

Compound	True Value (mg/kg)	Sample Result (mg/kg)	<u>³ Rec</u>	QC Limits <u>% Rec</u>
Aroclor 1254	0.167	0,172	103	50-160

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935305-Blank Sample Type: Water

Date Sampled : NA

Date Analyzed: 02/10/93

Date Received: NA

Chloromethane			Reporting	
Bromomethane	<u>Analyte</u>	Result		Units
Bromomethane	Chloromethane	<	10	uq/L
Vinyl Chloroethane 10 ug/L Methylene Chloride 5 ug/L Acetone (4.3)* 100 ug/L Carbon Disulfide 5 ug/L 1,1-Dichloroethene 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 2-Butanone 100 ug/L 1,1,1-Trichloroethane 5 ug/L 2-Butanone 5 ug/L 1,1,1-Trichloroethane 5 ug/L 2-Butanone 5 ug/L 1,1,1-Trichloropropane 5 ug/L 2-Dichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,1,2-Trichloroethane 5 ug/L <	Bromomethane	<	10	
Chloroethane 10 ug/L Methylene Chloride 5 ug/L Acetone (4.3)* 100 ug/L Carbon Disulfide 5 ug/L 1,1-Dichloroethane 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L Chloroform (1.2)* 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 2-Butanone 100 ug/L 2-Trichloroethane 5 ug/L 2-Butanone 5 ug/L 3-Dichloropropane 5 ug/L 4-M	Vinyl Chloride	<	10	
Methylene Chloride 5 ug/L Acetone (4.3)* 100 ug/L Carbon Disulfide 5 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 2-Butanone 100 ug/L 1,1,1-Trichloroethane 5 ug/L 2-Butanone 5 ug/L 1,1,1-Trichloroethane 5 ug/L 2-Butanone 5 ug/L 1,1,1-Trichloroethane 5 ug/L 2-Butanone 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,1,2-Trichloroethane 5 ug/L 1,1,2-Trichloroethane 5 ug/L 2-Chl		<	10	
Acetone (4.3)* 100 ug/L Carbon Disulfide 5 ug/L 1,1-Dichloroethene 5 ug/L 1,1-Dichloroethane 5 ug/L 1,2-Dichloroethanes, total 5 ug/L Chloroform (1.2)* 5 ug/L Chloroethane 5 ug/L 2-Butanone 1000 ug/L 1,1-Trichloroethane 5 ug/L Carbon Tetrachloride 5 ug/L Vinyl Acetate 50 ug/L Bromodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L Trichloroethene 5 ug/L Dibromochloromethane 5 ug/L 1,1,2-Trichloroethane 5 ug/L Benzene 5 ug/L Cis-1,3-Dichloropropene 5 ug/L		<		
Carbon Disulfide 5 ug/L 1,1-Dichloroethene 5 ug/L 1,2-Dichloroethenes, total 5 ug/L 1,2-Dichloroethenes, total 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 2-Butanone 100 ug/L 1,1,1-Trichloroethane 5 ug/L Carbon Tetrachloride 5 ug/L Vinyl Acetate 50 ug/L Bromodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L Trichloroethene 5 ug/L Dibromochloromethane 5 ug/L 1,1,2-Trichloropropene 5 ug/L 2-Chloroethyl Vinyl Ether 5 ug/L 3-Chloroethyl Vinyl Ether 5		(4.3) *	100	
1,1-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 1,2-Dichloroethane 5 ug/L 2-Butanone 100 ug/L 1,1,1-Trichloroethane 5 ug/L 2-Butanone 5 ug/L 1,1,1-Trichloroethane 5 ug/L 1,1,1-Trichloroethane 5 ug/L Promodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,1,2-Trichloroethane 5 ug/L Dibromochloromethane 5 ug/L 1,1,2-Trichloroethane 5 ug/L 2-Chloroethyl Vinyl Ether 5 ug/L 2-Chloroethyl Vinyl Ether 5 ug/L 2-Hexanone 5 ug/L 2-Hexanone 5 ug/L 2-Hexanone </th <th>Carbon Disulfide</th> <th></th> <th></th> <th></th>	Carbon Disulfide			
1,1-Dichloroethane 5 ug/L 1,2-Dichloroethenes, total 5 ug/L Chloroform (1.2)* 5 ug/L 1,2-Dichloroethane 5 ug/L 2-Butanone 100 ug/L 1,1,1-Trichloroethane 5 ug/L Carbon Tetrachloride 5 ug/L Vinyl Acetate 50 ug/L Bromodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Trichloroethane 5 ug/L Dibromochloromethane 5 ug/L 1,1,2-Trichloroethane 5 ug/L Benzene 5 ug/L Cis-1,3-Dichloropropene 5 ug/L 2-Chloroethyl Vinyl Ether 10 ug/L Bromoform 5 ug/L 4-Methyl-2-Pentanone 5 ug/L 2-Hexanone 5 ug/L	1,1-Dichloroethene	<	5	
Chloroform (1.2)* 5 ug/L 1,2-Dichloroethane 4 5 ug/L 2-Butanone 1900 ug/L 1,1,1-Trichloroethane 5 ug/L 1,1,1-Trichloroethane 5 ug/L Vinyl Acetate 5 ug/L Bromodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L Trans-1,3-Dichloropropene 5 ug/L Dibromochloromethane 5 ug/L Dibromochloromethane 5 ug/L Dibromochloromethane 5 ug/L Dibromochloromethane 5 ug/L Chloroethyl Vinyl Ether 5 ug/L Bromoform 5 ug/L 4-Methyl-2-Pentanone 5 ug/L 2-Hexanone 5 ug/L Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Chlorobenzene 5 ug/L Ethylbenzene 5 ug/L Syre	1,1-Dichloroethane	<	5	
Chloroform (1.2)* 5 ug/L 1,2-Dichloroethane 4 5 ug/L 2-Butanone 1900 ug/L 1,1,1-Trichloroethane 5 ug/L 1,1,1-Trichloroethane 5 ug/L Vinyl Acetate 5 ug/L Bromodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropane 5 ug/L Trans-1,3-Dichloropropene 5 ug/L Dibromochloromethane 5 ug/L Dibromochloromethane 5 ug/L Dibromochloromethane 5 ug/L Dibromochloromethane 5 ug/L Chloroethyl Vinyl Ether 5 ug/L Bromoform 5 ug/L 4-Methyl-2-Pentanone 5 ug/L 2-Hexanone 5 ug/L Tetrachloroethane 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Chlorobenzene 5 ug/L Ethylbenzene 5 ug/L Syre		<	5	
2-Butanone 100 ug/L 1,1,1-Trichloroethane 5 ug/L Carbon Tetrachloride 5 ug/L Vinyl Acetate 50 ug/L Bromodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L Trans-1,3-Dichloropropene 5 ug/L Trichloroethane 5 ug/L Dibromochloromethane 5 ug/L 1,1,2-Trichloroethane 5 ug/L Benzene 5 ug/L Cis-1,3-Dichloropropene 5 ug/L 2-Chloroethyl Vinyl Ether 10 ug/L Bromoform 5 ug/L 4-Methyl-2-Pentanone 50 ug/L 2-Hexanone 50 ug/L Tetrachloroethene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Chlorobenzene 5 ug/L Ethylbenzene 5 ug/L Styrene 5 ug/L Kylenes, total 10 ug/L <th></th> <th>(1.2)*</th> <th>5</th> <th>ug/L</th>		(1.2)*	5	ug/L
2-Butanone 100 ug/L 1,1,1-Trichloroethane 5 ug/L Carbon Tetrachloride 5 ug/L Vinyl Acetate 50 ug/L Bromodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L Trans-1,3-Dichloropropene 5 ug/L Dibromochloromethane 5 ug/L Dibromochloromethane 5 ug/L 1,1,2-Trichloroethane 5 ug/L Benzene 5 ug/L Cis-1,3-Dichloropropene 5 ug/L 2-Chloroethyl Vinyl Ether 10 ug/L Bromoform 5 ug/L 4-Methyl-2-Pentanone 50 ug/L 2-Hexanone 50 ug/L Tetrachloroethene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Chlorobenzene 5 ug/L Styrene 5 ug/L Kylenes, total 10 ug/L Surrogate Recoveries 10 ug/L	1,2-Dichloroethane	<	5	ug/L
1,1,1-Trichloroethane 5 ug/L Carbon Tetrachloride 5 ug/L Vinyl Acetate 50 ug/L Bromodichloromethane 5 ug/L 1,2-Dichloropropane 5 ug/L 1,2-Dichloropropene 5 ug/L Trans-1,3-Dichloropropene 5 ug/L Dibromochloromethane 5 ug/L 1,1,2-Trichloroethane 5 ug/L Benzene 5 ug/L Cis-1,3-Dichloropropene 5 ug/L 2-Chloroethyl Vinyl Ether 5 ug/L Bromoform 5 ug/L 4-Methyl-2-Pentanone 5 ug/L 2-Hexanone 5 ug/L 1-1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Chlorobenzene 5 ug/L Ethylbenzene 5 ug/L Styrene 3 ug/L Kylenes, total 4 11-12-12-12-12-12-12-12-12-12-12-12-12-1	2-Butanone	\mathbf{c}_{i}	100	ug/L
Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Trans-1,3-Dichloropropene Dibromochloromethane 1,1,2-Trichloroethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloropropene Dibromochlo	1,1,1-Trichloroethane	*(5	
Vinyl Acetate50ug/LBromodichloromethane5ug/L1,2-Dichloropropane5ug/LTrans-1,3-Dichloropropene5ug/LTrichloroethene5ug/LDibromochloromethane5ug/L1,1,2-Trichloroethane5ug/LBenzene5ug/LCis-1,3-Dichloropropene5ug/L2-Chloroethyl Vinyl Ether5ug/LBromoform5ug/L4-Methyl-2-Pentanone5ug/L2-Hexanone5ug/LTetrachloroethene5ug/L1,2,2-Tetrachloroethane5ug/LToluene5ug/LChlorobenzene5ug/LEthylbenzene5ug/LStyrene5ug/LXylenes, total10ug/LSurrogate Recoveries10ug/LToluene-dg411-1244-Bromofluorotenzene10511-124		e"	5	
Bromodichloromethane 1,2-Dichloropropane 1,2-Dichloropropane 5 ug/L Trans-1,3-Dichloropropene 6 5 ug/L Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 5 ug/L Benzene 6 5 ug/L 2-Chloroethyl Vinyl Ether 5 ug/L Bromoform 6 5 ug/L 10 ug/L Bromoform 7 5 ug/L 2-Hexanone 8 50 ug/L 2-Hexanone 8 50 ug/L 2-Hexanone 8 50 ug/L 2-Hexanone 8 50 ug/L 3 ug/L 3 ug/L 4-Methyl-2-Pentanone 8 50 ug/L 5 ug/L 6 ug/L 7 ug/L	Vinyl Acetate	.*	50	- :
1,2-Dichloropropane Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane Dibromochloropropene Dibromochloropropene Dibromochloropropene Dibromochloromethane Dibromochl	Bromodichloromethane	,	5	
Trans-1,3-Dichloropropene	1,2-Dichloropropane	ζ.	5	
Trichloroethene Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloromethane Dibromochloroethane Dibr		۲.	5	ug/L
2-Chloroethyl Vinyl Ether 10 ug/1 Bromoform 5 ug/L 4-Methyl-2-Pentanone 50 ug/L 2-Hexanone 50 ug/L Tetrachloroethene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Chlorobenzene 5 ug/L Ethylbenzene 5 ug/L Styrene 5 ug/L Styrene 5 ug/L Sylenes, total 5 ug/L Surrogate Recoveries 20 Linits Toluene-dg 4-Bromofluorotenzene 105	Trichloroethene	• •	5	ug/L
2-Chloroethyl Vinyl Ether 10 ug/1 Bromoform 5 ug/L 4-Methyl-2-Pentanone 50 ug/L 2-Hexanone 50 ug/L Tetrachloroethene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Chlorobenzene 5 ug/L Ethylbenzene 5 ug/L Styrene 5 ug/L Styrene 5 ug/L Sylenes, total 5 ug/L Surrogate Recoveries 20 Linits Toluene-dg 4-Bromofluorotenzene 105	Dibromochloromethane	•	5	ug/L
2-Chloroethyl Vinyl Ether 10 ug/1 Bromoform 5 ug/L 4-Methyl-2-Pentanone 50 ug/L 2-Hexanone 50 ug/L Tetrachloroethene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Chlorobenzene 5 ug/L Ethylbenzene 5 ug/L Styrene 5 ug/L Styrene 5 ug/L Sylenes, total 5 ug/L Surrogate Recoveries 20 Linits Toluene-dg 4-Bromofluorotenzene 105	1,1,2-Trichloroethane	•	5	ug/L
2-Chloroethyl Vinyl Ether 10 ug/1 Bromoform 5 ug/L 4-Methyl-2-Pentanone 50 ug/L 2-Hexanone 50 ug/L Tetrachloroethene 5 ug/L 1,1,2,2-Tetrachloroethane 5 ug/L Toluene 5 ug/L Chlorobenzene 5 ug/L Ethylbenzene 5 ug/L Styrene 5 ug/L Styrene 5 ug/L Sylenes, total 5 ug/L Surrogate Recoveries 20 Linits Toluene-dg 4-Bromofluorotenzene 105	Benzene	•,	5	ug/L
2-Chloroethyl Vinyl Ether 1 10 ug/1 Bromoform 5 ug/L 4-Methyl-2-Pentanone 6 50 ug/L 2-Hexanone 7 50 ug/L Tetrachloroethene 7 5 ug/L 1,1,2,2-Tetrachloroethane 7 5 ug/L Toluene 7 5 ug/L Chlorobenzene 7 5 ug/L Ethylbenzene 7 5 ug/L Styrene 7 5 ug/L Surrogate Recoveries 7 22 Limits 7 20 uene-d ₈ 4-Bromofluorotenzene 105 ug/L	Cis-1,3-Dichloropropene	٠,		ug/L
Bromoform 5 ug/L 4-Methyl-2-Pentanone 6 50 ug/L 2-Hexanone 7 50 ug/L Tetrachloroethene 7 5 ug/L 1,1,2,2-Tetrachloroethane 7 5 ug/L Toluene 7 5 ug/L Chlorobenzene 7 5 ug/L Ethylbenzene 7 5 ug/L Styrene 7 5 ug/L	2-Chloroethyl Vinyl Ether		10	
4-Methyl-2-Pentanone	Bromoform	·;		
2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Kylenes, total Surrogate Recoveries Toluene-d ₈ 4-Bromofluorobenzene Surrogate Name of the street of th	4-Methyl-2-Pentanone	<	50	-
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Kylenes, total Surrogate Recoveries Toluene-d ₈ 4-Bromofluorobenzene Sund L	2-Hexanone	<	50	
1,1,2,2-Tetrachloroethane Toluene Chlorobenzene	Tetrachloroethene	<;	Ē	=
Styrene Kylenes, total Surrogate Recoveries Toluene-d ₈ 4-Bromofluorobenzene Surrogate Recoveries 108 41-109 70-111	1,1,2,2-Tetrachloroethane	•5	5	
Styrene Kylenes, total Surrogate Recoveries Toluene-d ₈ 4-Bromofluorobenzene Surrogate Recoveries 108 41-109 70-111			5	ug, L
Styrene Kylenes, total Surrogate Recoveries Toluene-d ₈ 4-Bromofluorobenzene Surrogate Recoveries 108 41-109 70-111	Chlorobenzene	4	5	
Styrene Styren	Ethylbenzene	<	Ē	
Surrogate Recoveries Toluene-d ₈ 4-Bromofluorokenzene 108 20 Minits 41-109 40-111	Styrene		÷ ;	
Toluene-d ₈ 41-125 4-Bromofluorobenzene 198 78-112	Kylenes, total	•	5.	uğ 1.
4-Bromofluorobenzene 108 70-111	Surrogate Recoveries			23 100 355
4-Bromofluorobenzene 108 70-111	Toluene-d.			
		1.12		
		, - , - , -		

NA = Not Applicable

^{*} Detected below reporting limit; quantitation may be unreclable. Responding the compound not detected at the armost the Minted reportion is not.

Volatile Organic Compounds - EPA Method 8240

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935805-Blank Sample Type: Water Date Sampled: NA Date Received: NA

Date Analyzed: 02/11/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
Chloromethane	<	10	ug/L
Bromomethane	<	10	ug/L
Vinyl Chloride	<	10	ug/L
Chloroethane	<	10	ug/L
Methylene Chloride	<	5	ug/L
Acetone	(11) *	100	ug/L
Carbon Disulfide	<	5	ug/L
1,1-Dichloroethene	<	5	ug/L
1,1-Dichloroethane	<	5	ug/L
1,2-Dichloroethenes, total	<	5	ug/L
Chloroform	<	5	ug/L
1,2-Dichloroethane	<	5	ug/L
2-Butanone	(1.2) *	100	ug/L
1,1,1-Trichloroethane	`<	5	ug/L
Carbon Tetrachloride	- 2	Ξ	ug/L
Vinyl Acetate	<	50	ug/L
Bromodichloromethane	<	5	ug/L
1,2-Dichloropropane	<	5	ug/L
Trans-1,3-Dichloropropene	< .	5	ug/L
Trichloroethene	<	5	ug/L
Dibromochloromethane	<		ug/L
1,1,2-Trichloroethane	<	5	ug/L
Benzene	e,	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/L
Cis-1,3-Dichloropropene	<	5	ug/L
2-Chloroethyl Vinyl Ether	<	10	ug/L
Bromoform	<	5	ug/L
4-Methyl-2-Pentanone	<	50	ug/L
2-Hexanone	<	5.0	ug/L
Tetrachloroethene	<		ug/L
1,1,2,2-Tetrachloroethane	<		ug/1
Toluene	<	Ę	ug/L
Chlorobenzene	<	5	ug/1
Ethylbenzene	<	5	ug/L
Styrene	<	Ę	ugil
Kylenes, total	-2	=	ug/L
			24, E
Surrogate Recoveries			20 Limits
Toluene-d ₈	3.5		31-129
4-Bromofluorobenzene	9.7	•	76-112
1,2-Dichloroethane-d.	37		75-110
2/0 210::121000::2:00 21	J.	•	

NA = Not Applicable

^{*} Detected below reporting limit; quantitation may be unreliable.

^{2 -} Compound not detected at or above the lister ferrating limit.

Quality Assurance Volatile Organics - EPA Method 8240 Matrix Spike Recovery and Precision

Client: Soil Tech

Client Sample ID: 18.6-46532-3S-S2H

VISTA Sample ID: 935805-003

Sample Type: Soil Date Sampled: 01/28/93 Date Received: 01/29/93

Spike Sample MS

QC

Date Analyzed: 02/10/93

Compound	Added (ug/kg)	Conc. (ug/kg	Conc.) (ug/kg	MS) % Rec		mits Rec
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	5000 5000 5000 5000 5000	ND ND ND 120 ND	4370 5930 5360 5680 5820	87 119 107 111 116	7 <i>6</i> 81 71	3-132 5-133 1-119 1-134 5-118
Compound	Added	MSD Cond. [ug/kg]	MSD <u>* Rec</u>	<u>RPD</u>	Lim	C its <u>% Re</u> c
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	5000 5 5000 5 5000 6	390 390 539 130 130	88 126 113 113 113	1 6 7 (0 10	12 6 4	43-131 76-100 31-110 71-100 95-11

ND Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Quality Assurance Volatile Organics - EPA Method 8249 Laboratory Control Sample

Client: Soil Tech VISTA Sample ID: 935805-LCS Date Analyzed: 02/10/93

True Value <u>(ug/L)</u>	Sample Result (ug/L)	% Rec	QC Limits <u>% Rec</u>	
50	45.8	92	92-135	
50	59.1	118	75-119	
50	55.5	111	94-123	
50	50.2	100	88-116	
50	57.5	115	86-119	
	Value (ug/L) 50 50 50 50	Value Result (ug/L) (ug/L) 50 45.8 50 59.1 50 55.5 50 50.2	Value Result (ug/L) (ug/L) % Rec 50 45.8 92 50 59.1 118 50 55.5 111 50 50.2 100	Value Result Limits (ug/L) (ug/L) \$ Rec \$ Rec 50 45.8 92 92-135 50 59.1 118 75-119 50 55.5 111 94-123 50 50.2 100 88-116

Quality Assurance Volatile Organics - EPA Method 8240 Matrix Spike Recovery and Precision

Client: Soil Tech

Client Sample 1D: 18.67-46532-3S-I1

VISTA Sample ID: 935805-007

Sample Type: Waste Date Sampled: 01/28/93 Date Received: 01/29/93

Date Analyzed: 02/11/93

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg	Conc		QC Limits <u>% Rec</u>
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	25,000 25,000 25,000 25,000 25,000	1,500 21,000 7,000 5,400 ND	19,600 25,600 27,300 29,500 23,500	72 18 81 96 94	43-132 76-133 81-119 71-134 85-118
Compound	Spike Added (mg/kg)	MSD Conc. (mg/kg)	MSD ³ Rec	RPD	lo Limita <u>RPD A Ra</u> o
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	25,000 25,000 25,000 25,000 25,000	21,800 28,400 30,400 34,700 27,500	81 30 94 117 110	12 50 15 20	10 43-100 76-100 6 81-119 4 71-104 6 85-110

ND = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Quality Assurance Volatile Organics - EPA Method 8240 Laboratory Control Sample

Client: Soil Tech VISTA Sample ID: 935805-LCS Date Analyzed: 02/11/93

Compound	True Value <u>(ug/L)</u>	Sample Result (ug/L)	<u> १ Rec</u>	QC Limits <u>% Pac</u>
1,1-Dichloroethene	50	46.5	93	92-135
Benzene	50	58.1	116	75 - 19
Trichloroethene	50	50.5	101	94-123
Toluene	50	55.5	111	88-116
Chlorobenzene	50	49.8	100	86-119

Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech Client Sample ID: NA

Date Sampled: NA Date Received: NA Date Extracted: 02/03/93 Date Analyzed: 02/04/93

VISTA Sample ID: 935805-Blank Sample Type: Waste Date Sampled: NA Date Received: NA

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
Phenol	<	100	mg/kg
Bis(2-Chloroethyl) Ether	<	100	mg/kg
2-Chlorophenol	<	100	mg/kg
1,3-Dichlorobenzene	<	100	mg/kg
1,4-Dichlorobenzene	<	100	mg/kg
Benzyl Alcohol	<	200	mg/kg
1,2-Dichlorobenzene	<	100	mg/kg
2-Methylphenol	<	100	mg/kg
Bis(2-Chloroisopropyl) Ether	<	100	mg/kg
4-Methylphenol	<.	100	mg/kg
N-Nitroso-di-n-propylamine	• (100	mg/kg
Hexachloroethane	·*.	100	mg/kg
Nitrobenzene	• *	100	mg/kg
Isophorone	٠.	100	mg/kg
2-Nitrophenol	e.,	100	mg/kg
2,4-Dimethylphenol		100	mg/kg
Benzoic Acid	ϵ_{s}	500	mg/kg
Bis(2-Chloroethoxy)methane	45	100	mg/kg
2,4-Dichlorophenol	42	10C	mg/kg
1,2,4-Trichlorobenzene		100	mg/kg
Naphthalene		100	mg/kg
4-Chloroaniline		200	mg/kg
Hexachlorobutadiene	·:	100	mg/kg
4-Chloro-3-methylphenol	• "	200	mg/kg
2-Methylnaphthalene	4.2	100	mg/kg
Hexachlorocyclopentadiene	<	100	mg/kg
2,4,6-Trichlorophenol	<	100	mg/kg
2,4,5-Trichlorophenol	1	100	mg/kg
2-Chloronaphthalene		100	mg/kg
2-Nitroaniline	·*	500	mg/kg
Dimethyl Phthalate	•(100	mg/kg
Acenaphthylene	٠.	100	mg/kg
3-Nitroaniline		500	mg/kg
Acenaphthene	•	100	mg,kg
2,4-Dinitrophenol		50C	mg/kg
4-Nitrophenol	•	500	mg/kg
Dibenzofuran		100	mg/kg

NA = Not Applicable =

< = Compound not detected at or apove the listed reporting limit.

Semivolatile Organic Compounds - EPA Method 8270 continue:

VISTA Sample ID: 935805-Blank

2 4 h

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	100	mg/kg
2,6-Dinitrotoluene	<	100	mg/kg
Diethyl Phthalate	<	100	mg/kg
4-Chlorophenyl Phenyl Ether	<	100	mg/kg
Fluorene	<	100	mg/kg
4-Nitroaniline	<	500	mg/kg
4,6-Dinitro-2-methylphenol	<	500	mg/kg
N-Nitrosodiphenylamine	<	100	mg/kg
4-Bromophenyl Phenyl Ether	<	100	mg/kg
Hexachlorobenzene	<	100	mg/kg
Pentachlorophenol	<	500	mg/kg
Phenanthrene	<	100	mg/kg
Anthracene	<<	100	mg/kg
Di-n-butyl Phthalate	<	100	mg/kg
Fluoranthene	<	100	mg/kg
Pyrene	<	100	mg/kg
Butylbenzyl Phthalate	<	100	mg/kg
3,3'-Dichlorobenzidine	<	200	mg/kg
Benzo(a)anthracene	<	100	mg/kg
Bis(2-Ethylhexyl) Phthalate	<	100	mg/kg
Chrysene	<	100	mg/kg
Di-n-octyl Phthalate	<	100	my/kg
Benzo(b) fluoranthene	•;	100	mg/kg
Benzo(k)fluoranthene	<.	100	mg/kg
Benzo(a)pyrene	*C	100	mg/kg
Indeno(1,2,3-cd)pyrene	€.	100	mg/kg
Dibenz(a,h)anthracene	<	100	mg/kg
Benzo(g,h,i)perylene	<.	100	mg/kg
Surrogate Recoveries			<u> OC Limits</u>
Nitrobenzene-d ₅	100	:	32-118
2-Fluorobiphenyl	113	·	37-114
Terphenyl-d ₁₄	127		44-101
Phenol-d ₆	97	3	32-121
2-Fluorophenol	100	•	16-141
2,4,6-Tribromophenol	35	•	15-12-1

< = Compound not detected at or above the listed reporting limit.</p>

Semivolatile Organic compounds - EPA Method 8270

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935805-Blank Sample Type: Soil Date Sampled: NA Date Réceived: NA

Date Extracted: 02/11/93 Date Analyzed: 02/13/93

		Reporting	
<u>Analyte</u>	Result	Limit	Units
		=======================================	
Phenol	<	330	ug/kg
Bis(2-Chloroethyl) Ether	<	330	ug/kg
2-Chlorophenol	<	330	ug/kg
1,3-Dichlorobenzene	<	330	ug/kg
1,4-Dichlorobenzene	<	3 3 0	ug/kg
Benzyl Alcohol	<	660	ug/kg
1,2-Dichlorobenzene	<	330	ug/kg
2-Methylphenol	<	330	ug/kg
Bis(2-Chloroisopropyl) Ether	<	330	ug/kg
4-Methylphenol	<	330	ug/kg
N-Nitroso-di-n-propylamine	<	330	ug/kg
Hexachloroethane	<	330	ug/kg
Nitrobenzene	<	330	ug/kg
Isophorone	4	330	ug/kg
2-Nitrophenol	•:	330	ug/kg
2,4-Dimethylphenol	•.5	330	ug/kg
Benzoic Acid	. ;	1,700	ug/kg
Bis(2-Chloroethoxy) methane	<	330	ug/kg
2,4-Dichlorophenol	<<	330	ug/kg
1,2,4-Trichlorobenzene	·:	330	ug/kg
Naphthalene	•*,	330	ug/kg
4-Chloroaniline	•.,	660	ug/kg
Hexachlorobutadiene	<	330	ug/kg
4-Chloro-3-methylphenol	<	560 ·	ug/kg
2-Methylnaphthalene	ϵ_{ζ}	330	ug/kg
Hexachlorocyclopentadiene	<	330	ug/kg
2,4,6-Trichlorophenol	<	330	ug/kg
2,4,5-Trichlorophenol		330	ug/kg
2-Chloronaphthalene	*.	330	ug/kg
2-Nitroaniline	•:	1,700	ug/kg
Dimethyl Phthalate	*:	. 330	ugiká
Acenaphthylene	42	333	ug/kg
3-Nitroaniline	<	1,700	ug/kg
Acenaphthene		222	ug, kg
2,4-Dinitrophenol	<	1,700	ug/kg
4-Nitrophenol	4,**	1,700	ug, kg
Dibenzofuran	<i>c</i> .		ua ka
 	•		** **

NA = Not Applicable

Compound not detected at or knowe the listed reporting plant.

Semivolatile Organic Compounds - EPA Method 8270 continued

VISTA Sample ID: 935805-Blank

· · · · ·

		Reporting	
Analyte	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	330	ug/kg
2,6-Dinitrotoluene	<	330	ug/kg
Diethyl Phthalate	<	330	ug/kg
4-Chlorophenyl Phenyl Ether	<	330	ug/kg
Fluorene	<	330	ug/kg
4-Nitroaniline	<	1,700	ug/kg
4,6-Dinitro-2-methylphenol	<	1,700	ug/kg
N-Nitrosodiphenylamine	· <	330	ug/kg
4-Bromophenyl Phenyl Ether	<	330	ug/kg
Hexachlorobenzene	<	330	ug/kg
Pentachlorophenol	<	1,700	ug/kg
Phenanthrene	< •	330	ug/kg
Anthracene	<	330	ug/kg
Di-n-butyl Phthalate	<	330	ug/kg
Fluoranthene	<	330	ug/kg
Pyrene	<	330	ug/kg
Butylbenzyl Phthalate	<	330	ug/kg
3,3'-Dichlorobenzidine	<	560	ug/kg
Benzo(a)anthracene	<	330	ug/kg
Bis(2-Ethylhexyl) Phthalate	<	330	ug/kg
Chrysene	<	330	ug/kg
Di-n-octyl Phthalate	<	330	ug/kg
Benzo(b)fluoranthene	<	330	ug/kg
Benzo(k)fluoranthene	<	330	ug/kg
Benzo(a)pyrene	<	330	ug/kg
Indeno(1,2,3-cd)pyrene	<	330	ug/kg
Dibenz(a,h)anthracene	<	330	ug/kg
Benzo(g,h,i)perylene	<	3 3 0	ug/kg
Surroqate Recoveries			QC Limits
Nitrobenzene-d ₅	73	Ž.	35-93
2-Fluoropiphenyl	52	÷	27-99
Terphenyl-d ₁₄	105		57-109
Phenol-d _s		数	26-100
2-Fluorophenol	71	÷	16-97
2,4,6-Tribromophenol	3	÷,	194101

< = Compound not detected at or above the listed reporting limit.

Quality Assurance Semivolatile Organics - EPA Method 8270 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935805-BLSP

Date Sampled : NA

Date Extracted: 02/03/93

Sample Type: Waste Date Received: NA

Date Analyzed: 02/13/93

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	MS Conc. (ug/kg	MS) % Rec	Li	QC mits Rec
Phenol	400	ND	385	96		6-90
2-Chlorophenol	400	ND	385	96		5-102
1,4-Dichlorobenzene	200	ND	111	56		8-104
Di-n-propylnitrosamine	200	ИD	202	101		1-126
1,2,4-Trichlorobenzene	200 400	ND	177	89		3-107
4-Chloro-3-methylphenol Acenaphthene	200	ND ND	343 177	86 89		5-100
4-Nitrophenol	400	ND ND	328	89 82		L-137 L-114
2,4-Dinitrotoluene	200	ND	162	31		2-80 7-114
Pentachlorophenol	÷00	ND	381	95		-109
Pyrene	208	ND	204	102		5-148
	Spika Added	MSD Conc.	MSD.			C its
Compound	(ug/kg)	(ug/kg)	子 Rec	RPD	RPD	<u> 8 Rac</u>
Phenol	400	375	94	2	35	26-31
2-Chlorophenol	400	379	95	2	50	25-111
1,4-Dichlorobenzene	200	112	56	Ú.	27	28+104
Di-n-propylnitrosamine	200		100	1	38	41-10%
1,2,4-Trichlorobenzene	200	196	93	19	23	33-100
4-Chloro-3-methylphenol	400	047	87	1	3.3	26-100
Acenaphthene	200	3 3 2		13	19	01-117
4-Nitrophenol	÷06	350	8 S	7	50	11-114
2,4-Dinitrotoluene	200	177	89 4 3	9	47	23-53
Pentachlorophenol Pyrene	400 200		93 111	2	47 36	107-117 35-117

NA = Not Applicable ND = Not Detected MS = Matrix Spike

MSD - Matrix Spike Duplicate

RPD - Relative Percent Difference

Quality Assurance Semivolatile Organics - EPA Method 8270 Matrix Spike Recovery and Precision

Client: Soil Tech

Client Sample ID: 18.7-46532-3S-S2L

VISTA Sample ID: 935805-004

Sample Type: Soil Date Sampled : 01/28/93 Date Received: 01/29/93 Date Extracted: 02/11/93 Date Analyzed: 02/13/93

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	MS Conc. (ug/kg	MS) % Rec	Li	QC mits <u>Rec</u>
Phenol 2-Chlorophenol	3330 3330	ND ND	1950 1800	59 54		0-96 :- 99
1,4-Dichlorobenzene Di-n-propylnitrosamine	1670 1670	ND ND	491 1300	29 78		8-95 2-112
1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol	1670 3330	ND ND	1120 2030	67 61		3-115 1-117
Acenaphthene 4-Nitrophenol	1670 3330	ND ND	1450 0	87 0		?~144)~126
2,4-Dinitrotoluene Pentachlorophenol	1670 3330	ND ND	1160 174	69 5	10	1-127 135
Pyrene	1670	ND	1160	59	/0-10T	
Compound	Spike Added	MSD Conc.	MSD	חתת	Lim	-
Compound	(ug/kg)	(ug/kg)	१ Rec	RPD	RPD	<u>3 Per</u>
Phenol	3330	2030	61	3	21	20-96
2-Chlorophenol 1,4-Dichlorobenzene	3330 1670	1840 519	55 31	2	19	24-95 28-65
Di-n-propylnitrosamine	1670	1080	65	19	53	20-117 - 20-117
1,2,4-Trichlorobenzene	1670	1070	64	5	1	22-11:
4-Chloro-3-methylphenol	3330	2070	52	2	3.0	31-117
Acenaphthene 4-Nitrophenol	1670 3330	1460 203	87 6 2	0 00	13	22-144
2,4-Dinitrotoluene	1670	1210	72	4	09 28	• • • • • • •
Pentachlorophenol	3330	535		95	3.7	10.00
Pyrene	1670	1210	72	.4	23	- 1-111

ND = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

Quality Assurance Semivolatile Organics - EPA Method 8270 Laboratory Control Sample

Date Analyzed: 02/13/93

Client: Soil Tech

VISTA Sample ID: 935805-LCS

Date Extracted: 02/11/93

Compound	True Value (ug/kg)	Sample Result (ug/kg)	% Rec	QC Limits % Rec
Phenol	3330	2430	73	5-112
2-Chlorophenol	3330	2370	71	23-134
1,4-Dichlorobenzene	1670	634	38	20-124
Di-n-propylnitrosamine	1670	1400	84	D-230
1,2,4-Trichlorobenzene	1670	1270	76	44-142
4-Chloro-3-methylphenol	3330	2450	74	22-147
Acenaphthene	1670	1240	74	47-145
4-Nitrophenol	3330	3070	92	D-132
2,4-Dinitrotoluene	1670	1390	83	39-139
Pentachlorophenol	3330	3200	96	14-176
Pyrene	1670	1530	92	52-115

Oil and Grease Gravimetric - Modified EPA Method 9070

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935805-Blank

Date Sampled : NA

Date Analyzed: 02/08/93

Sample Type: Soil
Date Received: NA

Analyte	Result	Reporting Limit	<u>Units</u>
Oil and Grease	<	50	mg/kg

NA = Not Applicable < = Compound not detected at or above the listed reporting limit.

Quality Assurance Oil and Grease - Modified EPA Method 9070 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 935805-BLSP

Date Sampled : NA

Date Analyzed: 02/08/93

Sample Type: Soil

Date Received: NA

Compound	Added	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS % Rec	QC Limits <u>% Rec</u>
Oil and Grease (Motor Oil)	503	ИD	540	107	35-141

Compound	Spike Added (ma/ka)	MSD Conc. (ma/ka)	MSD * Rec	חמפ	Q Lim RPD	
Oil and Grease (Motor Oil)						

NA = Not Applicable
ND = Not Detected
MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

HAZEN RESEARCH, INC. 4601 Indiana St. - Golden, CO 80403 Fel.: (303) 279 4501 - Telex 45-860

Proj No.		Project	Name				., (.	1/2/193				CHAIN	F CUSTODY RECO		
76.4	-1 S	•	Soil Te	3					7,7		7 7				
Sampler	s (Signa	tyre)							0		0		.,		
1. 145	17,4	/ (1,						7.2	O		i.	,			
ita. No.			Comp	Grab			No. of	ام اط	و.،	(9)	J _O	Svoc	, s	 	
	i - 25/48			Grab		ation Location	Container	s \-	Ö	a.	S	V)	υj		Homarks
Í	1 26:12					46532-35-51	\ . \ \	X.	<u> </u>		[X	so parale	continuely july al
ļ	i				1	46532-45-51	1	1 X	١,				.	and a low	Free Barre Berling
	·		}		18.6-	46532-35-5211		Υ		X,	X.	Χ,		analy.	
					18.7-	46532-35-526	١ .	x		,	X	х		,	
						46532-45-5211	1	X	-	1	X.	Х.		A. Inte	Prom Extract form of
					18.10 -	46532-45-526	1	X		1	\ \ \			of the comme	Propose Cather to Francist proceeding (4001) constant design
						46532-35-L1				. `					and the state of
	;				i	-L1(0)		1		5	ζ	,	į,	11. 11. 1.	· · · · · · · · · · · · · · · · · · ·
		<u>.</u>				- L1(w)	<u> </u>	1 -		7.` X		7		,) , , , , , ; ; ; ;	
					18.910-	46532-45- 11	1	1 "	·	`	` .	, · ·		36 A T (.)	and the complex
						- LI(C)	<u>}</u> . '	1	-			Э,	•		
	. /					- L1 (w)				K.	Δ.		`	only	
								ļ		A		`		- 1 3	
			-				ľ	1						LA Cost.	ton the sales of the first
		ļ ·			···										Property States
İ											-			290765	(3 €
	shod by	: (Signal	lure)		ete/Time	Received by: (Signature) F	lelingu	lshe	d by:	(Sign	aluro)	Date/Time	Received by: (Signature)
lelingul	shibd by	: (Signal	ture)		ste/Time	Received by: (Signature,) F	Relinqu	ishe	d by:	(Sign	aturo)	Date/Time	Received by: (Signature)
lelinqui	shed by	: (Signal	ture)	1/29	ste/Time	Received for laboratory (Signature)	1967 F	lemari	(8:						

926 Inter coven Farkwick (b. 15. 200) Broomte di Dolorgaci (b. 10. 1303 (469) 6866

January 8, 1993

Mr. Roger Nielson Soil Tech 6300 South Syracuse #300 Englewood, Colorado 80111

Dear Mr. Nielson:

Enclosed are the results from the analyses of three samples, received on December 28, 1992, for the determination of organical organic pesticides PCB's and semivolatile organic compounds. Please feel free to call if you have any questions regarding these analyses.

Sincerely.

Robert J. Keck

Laboratory Director

RJK GT:dab Enclosures

VISTA Project # 5257.4

Reviewed by.

Gary Torr

Quality Assumince Director

Sample Description

<u>Laboratory ID</u>	Client ID	Type	Date Received
925714-001	Hazen NO 46532-1	Soil/Waste	12/28/92
925714-002	Hazen NO 46532-3	Soil/Waste	12/28/92
925714-003	Hazen NO 46532-2	Soil/Waste	12/28/92

Results and Discussion

VISTA Project # 925714

Three samples were received on December 28, 1992, for the determination of organochlorine pesticides PCB's and semivolatile organic compounds. The samples were analyzed according to the protocols described in USEPA SW-846, <u>Test Methods for Evaluating Solid Waste</u>, 3rd Ed., Methods 8080 and 8270.

The samples were reanalyzed for PCB's on January 7, 1993, after an acid cleanup procedure, in order to remove matrix interferences. Only AR1254 could be positively identified, due to the remaining interferences.

Organochlorine Pesticides/PCB's EPA Method 8080

Client: Soil Tech

Client Sample ID: Hazen NO 46532-1

VISTA Sample ID: 925714-001 Sample Type: Waste Date Sampled: 12/28/92 Date Received: 12/28/92

Date Sampled : 12/28/92 Date Extracted: 01/04/93

Pate Analyzed: 01/04/93

		Reporting	
<u>Analyte</u>	<u>Result</u>	<u>Limit</u>	<u>Units</u>
	_	2 42	41
Aldrin	<	0.40	mg/kg
alpha-BHC	<	0.30	mg/kg
beta-BHC	< .	0.60	mg/kg
delta-BHC	<	0.90	mg/kg
gamma-BHC (Lindane)	<	0.40	mg/kg
Chlordane	<	1.4	mg/kg
4,4'-DDD	1.9	1.1	mg/kg
4,4'-DDE	<	0.40	mg/kg
4,4'-DDT	2.2	1.2	mg/kg
Dieldrin	<	0.20	mg/kg
Endosulfan I	€.2	1.4	mg/kg
Endosulfan II	0.55	0.40	mg/kg
Endosulfan Sulfate	<	5.5	mg/kg
Endrin	٠,	0.60	mg/kg
Endrin Aldehyde	<.	2.3	mg/kg
Endrin Ketone	<	0.30	mg/kg
HCCPD	<	0.30	mg/kg
Heptachlor	<	9.30	mg/kg
Heptachlor Epoxide	•:	€.3	mg/kg
Isodrin	1.5	9.30	mg/kg
Methoxychlor	×5	:3	mg/kg
Toxaphene	<	24	mg/kg
PCB-1016	<.	2.3	mg/kg
PCB-1221		20	mg/kg
PCB-1232	<	13	mg/kg
PCB-1242	<	6.5	mg/kg
PCB-1248	<	6.5	mg/kg
PCB-1254	50	6.5	mg/kg
PCB-1260			mg/kg mg/kg
100 1200		• •	mar, red
Surrogate Recoveries			23 111153
Dibutyl Chlorendate DBC.			11-14

Compound not detected at or above the listed reporting limit.

EPA-CLP Target Compound List Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: Hazen NO 46532-1

VISTA Sample ID: 925714-001 Sample Type: Soil

Date Sampled: 12/28/92
Date Extracted: 12/30/92
Date Extracted: 01/05/93

		Reporting	
<u>Analyte</u>	Result	Limit	Units
Phenol	<	33	mg/kg
Bis(2-Chloroethyl) Ether	<	33	mg/kg
2-Chlorophenol	<	33	mg/kg
1,3-Dichlorobenzene	. <	33	mg/kg
1,4-Dichlorobenzene	<	3 3	mg/kg
Benzyl Alcohol	<	66	mg/kg
1,2-Dichlorobenzene	<	33	mg/kg
2-Methylphenol	<	33	mg/kg
Bis(2-Chloroisopropyl) Ether	<	3 3	mg/kg
4-Methylphenol	<	23	mg/kg
N-Nitroso-di-n-propylamine	ζ.	0.3	mg/kg
Hexachloroethane	<	3.3	mg/kg
Nitrobenzene	<	0.0	mg/kg
Isophorone	S (3.0	mg/kg
2-Nitrophenol	•	3.3	mg/kg
2,4-Dimethylphenol	•1	33 .	mg/kg
Benzoic Acid	•.,	170	mg/kg
Bis(2-Chloroethoxy)methane	٠.	3 3	mg/kg
2,4-Dichlorophenol	•	3 3	mg/kg
1,2,4-Trichlorobenzene		3.5	mg/kg
Naphthalene	3-3	3 3	mg/kg
4-Chloroaniline		စ် စ ်	mg/kg
Hexachlorobutadiene	•:	3 🤋	mg/kg
4-Chloro-3-methylphenol	<.	::€	mg/kg
2-Methylnaphthalene	52	3.3	mg/kg
Hexachlorocyclopentadiene	<′.	23	mg/kg
2,4,6-Trichlorophenol		33	mg/kg
2,4,5-Trichlorophenol	•:	3.0	mg/kg
2-Chloronaphthalene	•	0.3	mq/kg
2-Nitroaniline	• ,	3	ng/xg
Dimethyl Phthalate	• *		mg/kg
Acenaphthylene			ಗಳ (ಜನ
3-Nitroaniline	•		ಪತ್ರಗಳ
Acenaphthene			я. л.с
2,4-Dinitrophenol			±9/89
4-Nitrophenol	•	• • •	mg/kg
Dibenzofuran		• •	- H9 69 - M9 87
J. NOILO L. G. L. G. I			*****

k = Compound not detected at or above the listed reporting limit.

EPA-CLP Target Compound List Semivolatile Organic Compounds - EPA Method 8270 continued)

VISTA Sample ID: 925714-001

		Reporting	
Analyte	Result	<u>Limit</u>	<u>Units</u>
2,4-Dinitrotoluene	<	33	mg/kg
2,6-Dinitrotoluene	<	33	mg/kg
Diethyl Phthalate	(8.3)*	33	mg/kg
4-Chlorophenyl Phenvl Ether	<	33	mg/kg
Fluorene	<	33	mg/kg
4-Nitroaniline	<	170	mg/kg
4,6-Dinitro-2-methylphenol	<	170	mg/kg
N-Nitrosodiphenylamine	<	33	mg/kg
4-Bromophenyl Phenyl Ether	<	33	mg/kg
Hexachlorobenzene	<	33	mg/kg
Pentachlorophenol	<	170	mg/kg
Phenanthrene	<	33	mg/kg
Anthracene	<	33	mg/kg
Di-n-butyl Phthalate	97	33.	mg/kg
Fluoranthene	<	33	mg/kg
Pyrene	<	33	mg/kg
Butylbenzyl Phthalate	÷ Ģ	33	mg/kg
3,3'-Dichlorobenzidine	<	66	mg/kg
Benzo(a)anthracene	<	33	mg/kg
Bis(2-Ethylhexyl) Phthalate	210	3 3	mg/kg
Chrysene	<	33	mg/kg
Di-n-octyl Phthalate	<	33	mg/kg
Benzo(b)fluoranthene	<	33	mg/kg
Benzo(k) fluoranthene	•*	33	mg/kg
Benzo(a)pyrene	<	33	mg/kg
Indeno(1,2,3-cd)pyrene	<	33	mg/kg
Dibenz(a,h)anthracene	<	32	mg/kg
Benzo(g,h,i)perylene	<	3 3	mg/kg
Surrogate Recoveries			20 Limits
Nitrobenzene-d _s			05-90
2-Fluorobiphenyl		000000	27-99
Terphenyl-d,		-	57~100
Phenol-d ₆		S	26-100
2-Fluorophenol		\$	<u> </u>
2,4,6-Tribromophensl		D	19-191

^{*} Detected below reporting limit; quantitation may be unreliable.

D = Diluted Out.

< = Compound not detected at or above the listed reporting limit.</p>

Organochlorine Pesticides/PCB's EPA Method 8080

Client: Soil Tech

Client Sample ID: Hazen NO 45532-3

VISTA Sample ID: 925714-002

Date Sampled : 12/28/92 Date Extracted: 01/04/93 Sample Type: Waste

Date Received: 12/28/92 Date Analyzed: 01/04/93

		Donouting	
Numa Parka	Result	Reporting	
Analyte	RESUIL	<u>Limit</u>	Units
Aldrin	<	0.40	mg/kg
alpha-BHC	0.74	0.30	mg/kg
beta-BHC	<	0.60	mg/kg
delta-BHC	<	0.90	mg/kg
gamma-BHC (Lindane)	<	0.40	mg/kg
Chlordane	<	1.4	mg/kg
4,4'-DDD	2.4	1.1	mg/kg
4,4'-DDE	<	0.40	mg/kg
4,4'-DDT	1.6	1.2	mg/kg
Dieldrin	3.1	0.20	mg/kg
Endosulfan I	3.2	1.4	mg/kg
Endosulfan II	<.	0.40	mg/kg
Endosulfan Sulfate	• .	5.6	mg/kg
Endrin	• .	0.60	mg/kg
Endrin Aldehyde	.	2.3	mg/kg
Endrin Ketone	,	0.30	mg/kg
HCCPD		0.30	mg/kg
Heptachlor	:.;	0.30	mg/kg
Heptachlor Epoxide		8.3	mg/kg
Isodrin		0.30	mg/kg
Methoxychlor		18	mg/kg
Toxaphene	٠.	24	mg/ka
PCB-1016	•:	20	mg/kg
PCB-1221		20	mg/kg
PCB-1232	4	13	mg/kg
PCB-1242	· <	6.5	mg/kg
PC3-1248	e ^e	5.5	
PCB-1254	en en	5.5 5.5	mg/kg
PCB-1254 PCB-1260	₩	5.5 5.5	mg/kg
FC2-1200		บ	mg/kg
<u>Surrogate Recoveries</u>			20 1111
Dibutyl Chlorendate (DBC)	• • • •		41-14

 $[\]kappa$ - Compound not detected at or above the listed reporting limit.

EPA-CLP Target Compound List Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: Hazen NO 46532-3

Sample Type: Soil

VISTA Sample ID: 925714-002 Date Sampled : 12/28/92 Date Received: 12/28/92 Date Analyzed: 01/05/93 Date Extracted: 12/30/92

		Reporting	
<u>Analyte</u>	Result	Limit	Units
Phenol	36	17	mg/kg
Bis(2-Chloroethyl) Ether	<	17	mg/kg
2-Chlorophenol	<	17	mg/kg
1,3-Dichlorobenzene	<	17	mg/kg
1,4-Dichlorobenzene	< .	17	mg/kg
Benzyl Alcohol	<	33	mg/kg
1,2-Dichlorobenzene	(4.4)*	17	mg/kg
2-Methylphenol	9.5	17	mg/kg
Bis(2-Chloroisopropyl) Ether	<	17	mg/kg
4-Methylphenol	24	17	mg/kg
N-Nitroso-di-n-propylamine	<	17	mg/kg
Hexachloroethane	<	17	mg/kg
Nitrobenzene	<	17	mg/kg
Isophorone	45	17	mg/kg
2-Nitrophenol	<	17	mg/kg
2,4-Dimethylphenol	<	17	mg/kg
Benzoic Acid	<	85	mg/kg
Bis(2-Chloroethoxy)methane	<	17	mg/kg
2,4-Dichlorophenol	<	17	mg/kg
1,2,4-Trichlorobenzene	<	17	mg/kg
Naphthalene	59	17	mg/kg
4-Chloroaniline	<	3.3	mg/Hg
Hexachlorobutadiene	<	17	mg/kg
4-Chloro-3-methylphenol	<	3.3	mg/kg
2-Methylnaphthalene	2.5	17	mg/kg
Hexachlorocyclopentadiene	<	17	mg/kg
2,4,6-Trichlorophenol	<	17	mg/kg
2,4,5-Trichlorophenol	<	17	mg/kg
2-Chloronaphthalene	<	17	mg/kg
2-Nitroaniline	<.	35	mg/kg
Dimethyl Phthalate	(3.7)*	17	ng/kg
Acenaphthylene	4°,	17	mg/kg
3-Nitroaniline	4,	3 E	mg/kg
Acenaphthene	₹.	17	mg/kg
2,4-Dinitrophenol	<	8.5	mg/kg
4-Nitrophenol	•<	≘ 5	mg/kg
Dibenzofuran	* %	17	mg/kg

^{*} Detected below reporting limit; quantitation may be unreliable.

< = Compound not detected at or above the listed reporting limit.</p>

EPA-CLP Target Compound List Semivolatile Organic Compounds - EPA Method 8270 (continued)

VISTA Sample ID: 925714-002

		Reporting	
<u>Analyte</u>	<u>Result</u>	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	17	ma (lea
2,6-Dinitrotoluene	<	17	mg/kg
Diethyl Phthalate	<	17	mg/kg
4-Chlorophenyl Phenyl Ether	<	17	mg/kg
Fluorene	<	17	mg/kg
4-Nitroaniline	<	17 85	mg/kg
4,6-Dinitro-2-methylphenol	<		mg/kg
	<	85	mg/kg
N-Nitrosodiphenylamine		17	mg/kg
4-Bromophenyl Phenyl Ether Hexachlorobenzene	<	17	mg/kg
Pentachlorophenol	< <	17	mg/kg
Phenanthrene	<	85 17	mg/kg
	<	17 17	mg/kg
Anthracene	54		mg/kg
Di-n-butyl Phthalate Fluoranthene		17	mg/kg
	<	17	mg/kg
Pyrene	<	17	mg/kg
Butylbenzyl Phthalate	16	17	mg/kg
3,3'-Dichlorobenziding	<	33	mg/kg
Benzo(a) anthracene	<	17	mg/kg
Bis(2-Ethylhexyl) Phthalate	140	17	mg/kg
Chrysene	<	17	mg/kg
Di-n-octyl Phthalate	<	• · · · · · · · · · · · · · · · · · · ·	ng/kg
Benzo(b) fluoranthene	<	1.	mg/kg
Benzo(k) fluoranthene	<		mg/kg
Benzo(a)pyrene	<	17	mg/kg
Indeno(1,2,3-cd)pyrene	<	17	mg/kg
Dibenz(a,h)anthracene	e;	17	mg/kg
Benzo(g,h,i)perylene	Κ.	1	ng/kg
Surrogate Recoveries			20 Limits
Nitrobenzene-d ₅		<u> </u>	05-93
2-Fluorobiphenyl		5	27-99
Terphenyl-d ₁₄		 -	57-1.9
Phenol-d ₆		ery No	25-20
2-Fluorophenol		5	16 - 97
2,4,5-Tribromophenol		<u>.</u>	10-101

D - Diluted Dut.

 $[\]kappa$ = Compound not detected at or above the listed reporting limit.

Organochlorine Pesticides/PCB's EPA Method 8080

Client: Soil Tech

Client Sample ID: Hazen NO 46532-3
VISTA Sample ID: 925714-003
Date Sampled: 12/28/92
Date Extracted: 01/04/93

Sample Type: Waste
Date Received: 12/26/92
Date Analyzed: 01/04/93

Analyte	Result	Reporting <u>Limit</u>	<u>Units</u>
Aldrin	0.81	0.40	mg/kg
alpha-BHC	<	0.30	mg/kg
beta-BHC	<	0.60	mg/kg
delta-BHC	<	0.90	mg/kg
gamma-BHC (Lindane)	<	0.40	mg/kg
Chlordane	<	1.4	mg/kg
4 , 4 ' -DDD	<	1.1	mg/kg
4,4'-DDE	<	0.40	mg/kg
4,4'-DDT	3.2	1.2	mg/kg
Dieldrin	10	0.20	mg/kg
Endosulfan I	22	1.4	mg/kg
Endosulfan II	0.46	0.40	mg/kg
Endosulfan Sulfate	42	6.6	mg/kg
Endrin	<	0.60	mg/kg
Endrin Aldehyde	<	2.3	mg/kg
Endrin Ketone	<	0.30	mg/kg
HCCPD	<	0.30	mg/kg
Heptachlor	0.51	0.30	mg/kg
Heptachlor Epoxide	<	8.3	mg/kg
Isodrin	2.3	0.30	mg/kg
Methoxychlor	<;	16	mg/kg
Toxaphene	•;	24	mg/kg
PCB-1016	<	20	mg/kg
PCB-1221	٠,	20	mg/kg
PCB-1232	<	13	mg/kg
PCB-1242	<	6.5	mg/kg
PCB-1248	1.44	5.5	mg/kg
PCB-1254	77	6.5	mg/kg
PCB-1260		5.Ē	mg/kg
Surrogate Recoveries			
Dibutyl Chlorendate DBC	£ 0	:	:1-14.

< = Compound not detected at or above the listed reporting limit.

EPA-CLP Target Compound List Semivolatile Organic Compounds - EPA Method 8270

Client: Soil Tech

Client Sample ID: Hazen NO 46532-2

VISTA Sample ID: 925714-003 Sample Type: Soil
Date Sampled: 12/28/92 Date Received: 12/28/92 Date Analyzed: 01/05/93 Date Extracted: 12/30/92

		Reporting	
<u>Analyte</u>	Result	<u>Limit</u>	<u>Unit:</u>
Phenol	150	33	mg/kg
Bis(2-Chloroethyl) Ether	<	33	mg/kg
2-Chlorophenol	<	33	mg/kg
1,3-Dichlorobenzene	<	33	mg/kg
1,4-Dichlorobenzene	<	33	mg/kg
Benzyl Alcohol	<<	66	mg/kg
1,2-Dichlorobenzene	<	33	mg/kg
2-Methylphenol	(10) *	33	mg/kg
Bis(2-Chloroisopropyl) Ether	<	33	mg/kg
4-Methylphenol	(21)*	33	mg/kg
N-Nitroso-di-n-propylamine	<	33	mg/kg
Hexachloroethane	<	33	mg/kg
Nitrobenzene	• •	3 3	mg/kg
Isophorone	150	33	mg/kg
2-Nitrophenol	<	33	mg/kg
2,4-Dimethylphenol	(10)*	3 3	mg/kg
Benzoic Acid	<	170	mg/kg
Bis(2-Chloroethoxy)methane	* <u>*</u>	33	mg/kg
2,4-Dichlorophenol	***	33	mg/kg
1,2,4-Trichlorobenzene	• .	3.3	mg/kg
Naphthalene		33	mg/kg
4-Chloroaniline		56	mg/kg
Hexachlorobutadiene	17) *	33	mg/kg
4-Chloro-3-methylphenol	<	55	mg/hg
2-Methylnaphthalene	54	3 3	mg/kg
Hexachlorocyclopentadiene	•<	3.3	mg/kg
2,4,6-Trichlorophenol	<	33	mg/kg
2,4,5-Trichlorophenol	• *	3.3	mg/kg
2-Chloronaphthalene	<	3.3	mg/kg
2-Nitroaniline	<	170	mg Ng
Dimethyl Phthalate	10 *	3.3	mg/kg
Acenaphthylene		3.3	mg kg
3-Nitroaniline	٠.	273	mg/kg
Acenaphthene		3.3	mg/kg
2,4-Dinitrophenol	• ,	173	mg/kg
4-Nitrophenol	•	170	mắ xặ
Dibenzofuran	•.	3.3	ng K
			-

^{*} Detected below reporting limit; quantitation may be unreliable.

r = Compound not detected at or above the listed reporting limit.

EPA-CLP Target Compound List Semivolatile Organic Compounds - EPA Method 8270 [continued]

VISTA Sample ID: 925714-003

X . .

		Reporting	
Analyte	Result	Limit	<u>Units</u>
2,4-Dinitrotoluene	<	33	mg/kg
2,6-Dinitrotoluene	<	33	mg/kg
Diethyl Phthalate	6.6	33	mg/kg
4-Chlorophenyl Phenyl Ether	<	33	mg/kg
Fluorene	€	33	mg/kg
4-Nitroaniline	<	170	mg/kg
4,6-Dinitro-2-methylphenol	<	170	mg/kg
N-Nitrosodiphenylamine	<	33	mg/kg
4-Bromophenyl Phenyl Ether	<	33	mg/kg
Hexachlorobenzene	<	33	mg/kg
Pentachlorophenol	<	170	mg/kg
Phenanthrene	(3.3) *	33	mg/kg
Anthracene	<	33	mg/kg
Di-n-butyl Phthalate	71	3 3	mg/kg
Fluoranthene	<	3.3	mg/kg
Pyrene	<	3.3	mg/kg
Butylbenzyl Phthalate	51	2.2	mg/kg
3,3'-Dichlorobenzidine	<	ପ୍ର	mg/kg
Benzo(a)anthracene	<	3.3	mg/kg
Bis(2-Ethylhexyl) Phthalate	210	33	mg/kg
Chrysene	<	3.3	mg/kg
Di-n-octyl Phthalate	<	33	mg/kg
Benzo(b) fluoranthene	₹	3.3	mg/kg
Benzo(k)fluoranthene	<	3.3	mg/kg
Benzo(a)pyrene	<	0.3	mg/kg
Indeno(1,2,3-cd)pyrene	<	3.3	mg/kg
Dibenz(a,h)anthracene	<	3.3	πg/kg
Benzo(g,h,i)perylene	<	3 3	mg/kg
Surrogate Recoveries			QC Limits
Nitrobenzene-d ₅	:		35-93
2-Fluorobiphenyl			27-99
Terphenyl-d ₁₄		2	57-109
Phenol-d ₆	•	· · · · · · · · · · · · · · · · · · ·	28-102
2-Fluorophenol			18-97
2,4,6-Tribromophenol	:	-	11-131

^{*} Detected below reporting limit; quantitation may be unreliable.

D = Diluted Out.

< = Compound not detected at or above the listed reporting limit.

QUALITY ASSURANCE

Organochlorine Pesticides/PCB's EPA Method 8080

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 925714-Blank

Date Sampled : NA

Date Extracted: 01/04/93

Sample Type: Waste Date Received: NA

Date Analyzed: 01/04/93

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
Andryce	<u>KCDG1C</u>	DIMIC	ONITES .
Aldrin	<	0.40	mg/kg
alpha-BHC	<	0.30	mg/kg
beta-BHC	<	0.60	mg/kg
delta-BHC	<	0.90	mg/kg
gamma-BHC (Lindane)	<	0.40	mg/kg
Chlordane	<	1.4	mg/kg
4,4'-DDD	<	1.1	mg/kg
4,4'-DDE	< .	0.40	mg/kg
4,4'-DDT	<	1.2	mg/kg
Dieldrin	<	0.20	mg/kg
Endosulfan I		1.4	mg/kg
Endosulfan II		0.40	mg/kg
Endosulfan Sulfate	· .	6.6	mg/kg
Endrin	ζ.	0.60	
Endrin Aldehyde		2.3	mg/kg
Endrin Ketone	· <	0.30	mg/kg
HCCPD	<	0.30	mg/kg
Heptachlor	<	0.30	mg/kg
Heptachlor Epoxide	ર	8.3	mg/kg
Isodrin	•	0.3 0.30	mg/kg
Methoxychlor	•	18	mg/kg
Toxaphene	-1	24	mg/kg
PCB-1016		20	mg/kg
PCB-1015	• •	20	mg/kg
PCB-1221 PCB-1232	•	13	mg/kg
PCB-1232 PCB-1242	•		mg/kg
PCB-1242 PCB-1248	<u> </u>	5.5	mg/kg
		6.5 6.5	mg/kg
PCB-1254	K		mg/kg
PCB-1260	•	6.5	mg/kg
Surrogate Recoveries			<u>10 11 1 14 14 14 14 14 14 14 14 14 14 14 1</u>
	_		
Dibutyl Chlorendate (DBC			4 2 - 14
TCMX	•		41-11

NA = Not Applicable

< = Compound not detected at or above the listed reporting limit.</p>

Quality Assurance Organochlorine Pesticides - Method 8080 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 925714-BLSP

Date Sampled : NA

Date Extracted: 01/04/93

Sample Type: Waste Date Received: NA

Date Analyzed: 01/04/93

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS % Rec	QC Limits <u>% Rec</u>
gamma-BHC (Lindane)	0.331	ND	0.293	89	36-122
Heptachlor	0.313	ทอ	0.273	87	42-126
Aldrin	0.268	ND	0.236	88	39-117
Dieldrin	0.536	ND	0.515	88	43-105
Endrin	0.604	ND	0.545	90	35-136
4,4'-DDT	0.459	ND	0.388	85	22-145

	Spike Added	MSD Cond.	MSD		Q Lim	
Compound	(ma/kg)	(mg/kg)	Rec	RPD	<u> 250</u>	<u>A_Rel</u>
gamma-BHC (Lindane)	0.331	0.294	39	0	÷ 2	36-100
Heptachlor	0.313	0.277	39	1	13	42-126
Aldrin	9.269	0.240	9 O	2		39-11
Dieldrin	0.585	1.528	90	2	28	43-165
Endrin	0.604	0.545	9.0	O	30	35-12·
4,4'-DDT	0.459	1.388	35	0	3.5	2.2 - 1.4-1

NA = Not Applicable ND = Not Detected MS = Matrix Spike

MSD = Matrix Spike Duplicate

RPD = Relative Percent Difference

EPA-CLP Target Compound List Semivolatile Organic Compounds - EFA Method 8270

Client: Soil Tech Client Sample ID: NA

Date Sampled: NA
Date Extracted: 12/30/92

Date Received: NA
Date Analyzed: 01/05/93

VISTA Sample ID: 925714-Blank Sample Type: Soil Date Sampled: NA Date Received: NA

		Reporting	
<u>Analyte</u>	Result	Limit	<u>Units</u>
Phenol	<	330	mg/kg
Bis(2-Chloroethyl) Ether	<	330	mg/kg
2-Chlorophenol	<	330	mg/kg
1,3-Dichlorobenzene	<	330	mg/kg
1,4-Dichlorobenzene	<	330	mg/kg
Benzyl Alcohol	<	660	mg/kg
1,2-Dichlorobenzene	<	330	mg/kg
2-Methylphenol	<	330	mg/kg
Bis(2-Chloroisopropyl) Ether	<	330	mg/kg
4-Methylphenol	<	330	mg/kg
N-Nitroso-di-n-propylamine	<	330	mg/kg
Hexachloroethane	<	030	mg/kg
Nitrobenzene	<	300	mg/kg
Isophorone	<	300	mg/kg
2-Nitrophenol	<	330	mg/kg
2,4-Dimethylphenol	<	330	mg/kg
Benzoic Acid	<	1,700	mg/kg
Bis(2-Chloroethoxy)methane	<	330	mg/kg
2,4-Dichlorophenol	<	330	mg/kg
1,2,4-Trichlorobenzene	<	336	mg/kg
Naphthalene	<	330	mg/kg
4-Chloroaniline	Κ.	640	mg/kg
Hexachlorobutadiene	·C	331	mg/kg
4-Chloro-3-methylphenol	<<	÷ € 0	mg/kg
2-Methylnaphthalene	K.	330	mg/kg
Hexachlorocyclopentadiene	<	030	mg/kg
2,4,6-Trichlorophenol	<	030	mg/kg
2,4,5-Trichlorophenol	*	200	mg/kg
2-Chloronaphthalene	<	337	mg/kg
2-Nitroaniline	•:	1,733	mg/kg
Dimethyl Phthalate	<	300	mg/kg
Acenaphthylene	2	· · · ·	mg/kg
3-Nitroaniline	•:		mg/kg
Acenaphthene	·ζ	23.	mg/kg
2,4-Dinitrophenol	.*		mg/kg
4-Nitrophenol	ν.	-,	mg/kg
Dibenzofuran	<.	2.3.0	mg/kg

NA = Not Applicable

< = Compound not detected at or above the listed reporting limit.

EPA-CLP Target Compound List Semivolatile Organic Compounds - EPA Method 8270 (continued

VISTA Sample ID: 925714-Blank

		Reporting	
<u>Analyte</u>	Result	Limit	Units
A statement to the statement of the stat			<u> </u>
2,4-Dinitrotoluene	<	33 <i>0</i>	mg/kg
2,6-Dinitrotoluere	<	330	mg/kg
Diethyl Phthalate	<	330	mg/kg
4-Chlorophenyl Phenyl Ether	<	330	mg/kg
Fluorene	<	330	mg/kg
4-Nitroaniline	<	1,700	mg/kg
4,6-Dinitro-2-methylphenol	<	1,700	mg/kg
N-Nitrosodiphenylamine	<	330	mg/kg
4-Bromophenyl Phenyl Ether	<	330	mg/kg
Hexachlorobenzene	<	330	mg/kg
Pentachlorophenol	<	1,700	mg/kg
Phenanthrene	<	330	mg/kg
Anthracene	<	330	mg/kg
Di-n-butyl Phthalate	•,	3 30	mg/kg
Fluoranthene	•:	330	mg/kg
Pyrene	• 🕻	330 _	mg/kg
Butylbenzyl Phthalate	•	230	ng/kg
3,3'-Dichlorobenzidine	<.	6 60	mg/kg
Benzo(a)anthracene	<	330	mg/kg
Bis(2-Ethylhexyl) Phthalate	(97) ★	330	mg/kg
Chrysene	<	330	mg/kg
Di-n-octyl Phthalate	. ;	330	mg/kg
Benzo(b) fluoranthene	•*,	030	mg/kg
Benzo(k)fluoranthene	₹,	330	mg/kg
Benzo(a)pyrene	<	330.	mg/kg
Indeno(1,2,3-cd)pyrene	·Ç	330	mg/kg
Dibenz(a,h)anthracene	•	330	mg/kg
Benzo(g,h,i)perylene	•	233	mg/kg
Surrogate Recoveries			QC Limits
Nitrobenzene-d _s	4.3		35 - 93
2-Fluorobiphenyl	# <u> </u>		27-99
Terphenyl-d ₁₄			57-109
Phenol-d ₆	-		25-102
2-Fluorophenol			15-70-2 15-70
2,4,5-Tribromophenol	•••	•	10-101
Eldinonionion		•	~ J = _ J <u>L</u>

^{*} Detected below reporting limit; quantitation may be unreliable. * Compound not detected at or above the listed reporting limit.

Quality Assurance Semivolatile Organics - EPA Method 8270 Matrix Spike Recovery and Precision

Client: Soil Tech Client Sample ID: NA

VISTA Sample ID: 925714-BLSP

Date Sampled : NA

Date Extracted: 12/30/92

Sample Type: Soil Date Received: NA

Date Analyzed: 01/05/92

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kc		Li	QC mits <u>Rec</u>
Phenol 2-Chlorophenol	3330 3330	ND ND	3130 2220	94 67	2.	0-96 :-99
1,4-Dichlorobenzene Di-n-propylnitrosamine 1,2,4-Trichlorobenzene	1670 1670 1670	ND ND ND	978 968 811	59 58 49	22	3-95 2-112 3-115
4-Chloro-3-methylphenol Acenaphthene	3330 1670	ND ND	1960 1240	59 74 71	22	1-117 2-144 2-125
4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol	3330 1670 3330	ND ND ND	2350 1130 2260	. 68 68	13)-125)-127 (-133
Pyrene	1670 Spike	ND MSD	1330	80		127 C
Compound	Added (mg/kg)	Conc.	MSD % Rec	RPD		its <u>% Rec</u>
Phenol 2-Chlorophenol 1,4-Dichlorobenzene Di-n-propylnitrosamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol	3330 3330 1670 1670 1670 3330 1670 3230	3200 2430 1080 1030 1040 2240 1370 2620 1290 2470	96 73 62 62 67 62 77 74	2 9 10 7 23 13 10 11	0 4 4 6 4 8 4 6 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0	20-95 24-95 25-95 22-112 21-117 21-117 21-117 10-125 10-117
Pyrene	1570	1510	90	12		00-10"

ND = Not Detected MS - Matrix Spike

MSD = Matrix Spike Duplicate RPD = Relative Percent Difference

HAZEN RESEARCH, INC.

4601 Indiana St.: Golden, CO 80403 Tel: (303) 279-4501 : Telex 45-860

925714

CHAIN OF CUSTODY RECORD

No.		Project	Name /	40.5	-4653	1 7681-18		302	\$7.70	,					
npler	s (Signa	nture)						. 69	14						
1	Cicy h	ł _{t.}	10	1. 1.				Jod Pod	51/32						·
No.	Date	Time	Comp	Grab	Sta	tion Location	No. of Contains		N						Remarks
	¥ 15 1 30				Fae	1. 7-15710		- 1	1	<u></u> .				Mazio Al	
	16100	White			Fush	7-12677	1.	1	1					Hozen M	
	is 45	17.7%			ا م م	. 1369 <u>2,</u>	/.	1	!					HAZIA A	6 46.22 2. C
						. <u>.</u>				•					-
		-			-										· · · · · · · · · · · · · · · · · · ·
·	shed by	1 r: (Signat	ura)	Da	1	Received by: (Signature)		Relinqu	Ilsho	d by:	(Sign	aturo)	Date/Time	Received by: (Signature)
inqui	shed by	r: (Signat	ura)	Da		Received by: (Signature)		Relinqu	llahe	d by:	(Sign	ature)	Date/Time	Received by: (Signature)
inqul	shed by	r: (Signat	uru)	Da] ,	Received for laboratory (Signature)	by:	Remark	9;				-		<u></u>

CUSTOMER =: 01510

LABORATORIES, INC.

lice is an extractive of Section 5.2 million HRT - od an a Street + 1.1 den (C2 million An the FTS (23million 55 + 8AX +3C\$) (1 million) DATE (1 4 LAB= 1089) P.C. 3925 RECD 01/20 41

ANALYSIS REPORT

BOB KECK VISTA LABORATORIES, INC. 325 INTERLOCKEN PKWY =200 BROOMFIELD CO 80021

PROJ. # 935754-011-003

SEQUENCE/		01	02	03
SAMPLE ID	18.1-4	6532-2-S1	18.2-46532-2S2H	18.3-46532-2 S 2C
			0.02	
TOTAL CARBON%		8.93	· 0.57	0.38
RGANIC C3		8.45	9.55	· = - (1.90

THE SAMPLES ARE NOT HOMOGENEOUS.

HUFFMAN

CUSTOMER #: 01510

LABORATORIES, INC.

Quality Analytical Services Since 1936

4530 Indiana Street • Colden ICO 80403 Phone (303) 278-4455 • FAX (303) 278-7012 DATE [1417/9] LAB* [15993 P.O. 3950 RECD 02/02/93

ANALYSIS REPORT

BOB KECK VISTA LABORATORIES, INC. 325 INTERLOCKEN PKWY #200 BROOMFIELD CO 800?1

Herman 187 12 (2) (1) (1) Herman 18.

	SEQUENCE/ SAMPLE NUMBER			ANALYSIS						<u>;</u>										
			cz	ARI	BO	TAN:	E C	- -	- }	T)T	ĄΙ	CARBO	N3	0	RG	1XI	c (C	3
	01/935805-003-	-	-	-	-	0.6	07-	-	-	-	-	~	C.53-		• -	-	<u>-</u>	0.4	4 6	
	02/935805-004-	-	-	-	-	0.0)6 -	-	-	-	-	-	0.79-		-	-	-	0.7	73	
	03/935805-005-	-	-	-	<	<0.0	2-	-	_	-	-	-	0.76-		-	-	-	0.7	76	
	04/935805-005-		_	_	4	0.0)2-	-	-	-	-	-	c.77-		•	-	- 1	0.7	77	

SAMPLE 01 - 18.6-46532-3S-S2H, SAMPLE 02 - 18.7-46532-3S-S2L, SAMPLE 03 - 18.9-46532-4S-S2H, SAMPLE 04 - 18.10-46532-4S-S2L

THE SAMPLES ARE NOT HOMOGENEOUS.

DUSTOMER 7: 01021

LABORATORIES, INC.

Guality Amalytical Services Since 1936

4630 Indiana Street • Colden CO 80403 Frighe: 303) 278-4455 • FAX: (303) 278-7012, DATE 2, 17/93 TAB= 116293 P.O. 1354 RECD 02/03/93

ANALYSIS REPORT

R. ROSTAD HAZEN RESEARCH, INC. 4601 INDIANA ST. GOLDEN CO 80403

SEQUENCE/ SAMPLE ID	·-			ì				ВЗ	02 4/93-2	2				03 B34/93-3		
CARBONATE C%	_	_	_	0.21	_	_	_	_	-	0.20	_	_	-	_	_;	<0.02
TOTAL CARBON%	_	_	_	0.28	-		_	-	_	0.26	_	-	-	-	-	0.05
OPCANTO C9	_	_	_	0.07	_	_	_	_		1 66	_		_	_		0.05

USTOMER *:

LABORATORIES, INC.

Quality Analytical Services Since 1936

4630 Indiana Street: Golden, CO 80493 Prone: (303) 278-4455 • FAX (303) 278-70 (2) DATE 3/26/93 LAB= 137493 P.O. 1740 RECD 03/12/93

ANALYSIS REPORT

R. ROSTAD HAZEN RESEARCH, INC. 4601 INDIANA ST. GOLDEN CO 80403

SEQUENCE/	ANALYSIS
SAMPLE NUMBER	CARBONATE C% TOTAL CARBON% ORGANIC C% TOT ORG CMG/I
01/C226/93-1-	254.
02/C227/93-1-	4.
03/C228/93-1-	
04/C229/93-1-	-
05/C241/93-1	C.56 4.57 4.01
76/C241/93-2	<0.02 50.53 50.53

SAMPLE C226/93-1 IS CLOUDY AND CONTAINS PARTICULATES. SAMPLES C41/93-1 AND C241/93-2 ARE NOT HOMOGENEOUS.

Fanie 1
Summary of Sitewide Soii Remediation Levels and Concentrations
American Chemical Services NPL Site
Griffith, Indiana

			Average	Concentrati	on (mg/kg)	at:	
Rem. Level	Minimum	Maximum	On-Site	Still Bot.	Off-Site	Kapica	_
(mg/kg)	mg/kg)	(mg/kg)	Cont.	Trimi Lag.	Cont	Pazmev	
							_
0.0047	0.33	0.33	nd	nd :	0.33	nd	-
0.016	0.8	0.8	nd	nd)	0.8	nd	
0.046	1.1	1.1	nd	1.1	nd	nd	_
0.63	0.011	1.2	0.0115	1.2	nd :	0.042	_
0.002	0.013	7.7	nd	nd	3.86	0.088	_
0.0033	0.013	0.013	nd	nd	0.013	nd	_
0.16	0.88	0.88	nd	nd	0.88	nd	
0.12	0.025	3.3	nd	nd	3.3	7.7.7	
0.088	0.05	12	0.07	8.35	1.7	nd	
2	0.99	1,435	109	117	234	82.7	_
				5			
15	3.7	152	5.3	28.75	46.24	41.9	
2,600	57.4	6,400	515	466	1,462	2.313	
51	0.05	1,700	0.72	14.73	102	5.36	
1,400	4.5	3.750	32	196	253	792	
500	2.3	17,200	112	842	1.067	4,650	
320							-
4,900							
1,300 -							
490							
1.300							
1.2 37							
2.30**		a a man road can a denium					
754)							
,							
85							
							
1.00		- /					
	(mg/kg) 0.0047 0.016 0.046 0.63 0.002 0.0033 0.16 0.12 0.088 2 15 2.600 51 1.400 500 320 4.900 1.300 4.900 1.300 1.2 Vi 2.3 Vi 7.54 7.54 7.54 7.55 8.5	(mg/kg) (mg/kg) 0.0047 0.33 0.016 0.8 0.046 1.1 0.63 0.011 0.002 0.013 0.0033 0.013 0.16 0.88 0.12 0.025 0.088 0.05 2 0.99 15 3.7 2.600 57.4 51 0.05 1.400 4.6 500 2.3 320 4,900 1,300 1,2 % 7.2 2.3 % 7.6% 7.76% 7.77 8.5	0.0047 0.33 0.33 0.016 0.8 0.8 1 0.046 1.1 1.1 1.1 0.63 0.011 1.2 0.002 0.013 7.7 0.0033 0.013 0.013 0.16 0.88 0.88 0.12 0.025 3.3 0.088 0.05 12 2 0.99 1.435 15 3.7 152 2.600 57.4 6.400 51 0.05 1.700 1.400 4.6 3.750 500 2.3 17.200 320 4,900 1.300 1.230	Rem. Level (mg/kg) Minimum (mg/kg) Maximum (mg/kg) On-Site Cont. 0.0047 0.33 0.33 nd 0.016 0.8 0.8 nd 1 0.046 1.1 1.1 nd 0.63 0.011 1.2 0.0115 0.002 0.013 7.7 nd 0.0033 0.013 0.013 nd 0.16 0.88 0.88 nd 0.12 0.025 3.3 nd 0.088 0.05 12 0.07 2 0.99 1,435 109 15 3.7 152 5.3 2,600 57.4 6,400 515 51 0.05 1,700 0.72 1,400 4.6 3,750 32 500 2.3 17,200 112 320 4,900 1,300 1,200 112 2.3 st 754 2,200 1,300 1,300 1,300 1,300	Rem. Level (mg/kg) Minimum (mg/kg) Maximum (mg/kg) On-Site Cont. Still Bot. 0.0047 0.33 0.33 nd nd 0.016 0.8 0.8 nd nd 0.046 1.1 1.1 nd 1.1 0.63 0.011 1.2 0.0115 1.2 0.002 0.013 7.7 nd nd 0.003 0.013 0.013 nd nd 0.003 0.013 0.013 nd nd 0.003 0.013 0.013 nd nd 0.16 0.88 0.88 nd nd 0.12 0.025 3.3 nd nd 0.088 0.05 12 0.07 8.35 2 0.99 1.435 109 117 15 3.7 152 5.3 28.75 2.5000 57.4 6.400 515 466 500 2.3 17.200 112	Rem. Level (mg/kg) Minimum (mg/kg) Maximum (mg/kg) On-Site Cont. Still Bot. Trimt Lag. Off-Site Cont. 0.0047 0.33 0.33 nd nd 0.33 0.016 0.8 0.8 nd nd 0.8 0.046 1.1 1.1 nd 1.1 nd 0.002 0.013 7.7 nd nd 3.86 0.0033 0.013 0.013 nd nd 0.013 0.16 0.88 0.88 nd nd 0.013 0.16 0.88 0.88 nd nd 0.013 0.12 0.025 3.3 nd nd 0.88 0.12 0.025 3.3 nd nd nd 0.88 0.15 3.7 152 5.3 28.75 46.24 2.600 57.4 6,400 515 466 1.462 5.1 9.05 1.700 0.72 14.73 102 <t< td=""><td> Cont</td></t<>	Cont

Soles:

- 1. This table includes compounds for which sub-remainds in oversulate rean presented in in the ACS ROD (Table 8).
- 2. Concentrations at ACS were taken in millable 74 for the Table 74 of the likely
- 3. Total chromium and soul 1.0. dienteroethene in the energy of a negativitien
- 4. Average concentration shows its the artification made of three-edge concentration for toreactions.
- 5 and indicates the composind was not detected in this country.

^{.7%} **3**-

natives to

	er i ani ani fin
Detroit, M	Locin: F 6/%
Philly, Ch.	ing not contain the containing co
MTE ARE SENDING YO	U XX Attached Under separate cover via unball, while a
	Prints Plans Samples Symptotics
	Change Order XX Lab Results
OPIES DATE	DESCRIPTION
1 /2/24	Lab results
•	
	
THESE ADS TO ANSWER	TRO as absolved below:
THESE ARE TRANSMIT	TED as checked below:
THESE ARE TIMESSET	Approved as submitted Resubmit copies for approve
For approval	Approved as submitted Resubmit copies for approve
For approval For your use	Approved as submitted Resubmiliar copies for approved Approved as noted Submit
For approval For your use As requested	Approved as submitted Resubmill copies for approved Approved as noted Submit require for element Returned for corrections Return
For approval For your use As requested For review & contr FOR BIDS DUE	Approved as submitted Resubmill copies for approved Approved as noted Submit copies for determine Returned for corrections The formula of the corrections The formula of the corrections of the copies of the copi
For approval For your use As requested For review & cond FOR BIDS DUE	Approved as submitted Resubm copies for approved Approved as noted Submit copies for a con- Entitled for corrections Return comessionance PRINTS RETURNED ACTUS LIANT 100
For approval For your use As requested For review & cond FOR BIDS DUE REMARKS Attached are tax	Approved as submitted Resubmill_copies for approved Approved as noted
For approval For your use As requested For review & const FOR BIDS DUE REMARKS Attached are the report issued to	Approved as submitted Resubmill_copies for approved Approved as noted
For approval For your use As requested For review & const FOR BIDS DUE_ REMARKS Attached are the report issued to	Approved as submitted Resubmill_copies for approved Approved as noted
For approval For your use As requested For review & const FOR BIDS DUE REMARKS Attached are the report issued to	Approved as submitted Resubmill_copies for approved Approved as noted
For approval For your use As requested For review & cond FOR BIDS DUE REMARKS Attached are the report issued to	Approved as submitted Resubmill_copies for approved Approved as noted
For approval For your use As requested For review & cond FOR BIDS DUE REMARKS Attached are the	Approved as submitted Resubmill_copies for approved Approved as noted
For approval For your use As requested For review & cond FOR BIDS DUE REMARKS Attached are the report issued to	Approved as submitted Resubmill_copies for approved Approved as noted

อ เสาะสมราชที่ได้เกิดกา เคลื่องเกาะส เกาะสารเสาะเหตุ เสาะสารเสาะส

and the second of the second o

8100 North Aughn Auch (1) Morton Browell Units 9 60158 (3008) 708 (967-6666) FAIX (706) 967-6735

LABORATORY REPORT

Wartyn Inc. P.O. Hatt 5385

Madison. Wisconsin 53705

Report Tate: 2/13, 43 Sample Received: 2/3/93

Project Name: American Chemical Services

Sample Description: 18.5-46532-35-S1 Sample No.: 41033

Compound	Concentr Foun		Method Detection Limit (MDL)	Cantitation Limit
Purpeables	Sample	Blank	ug/kg (ppb)	ug/kg (ppi)
	(ppb)	(ppb)		. Yan Manuali C
1. Chilorome thane	<25,000	<1.0	25.,(0).	: 25, 11
2. Brommethane	<25.000	<0.7	25,000	: II. iii
2	A	-2.5	25.2	
3. Vinyl chloride	<25.000	<`	25.31	1 1 Ca
4. Chilomethane	<25.00	<`.~	25, W	1111
5. Di dilormetive	425.707	<'.5	$\mathbb{Z}^{2}(\Omega)$	<u></u>
n. Adrolein	425. D	<15.	77.00	• -
7. Adrylani trile	<25.000	<5.0°	<u>.</u>	٠
S. Trichlorofluoromething	<25,000	₹.5	25. kt	· · · · · · · · · · · · · · · · · · ·
st Arianological and	C	·•	<u></u> . * *	
9. 1.1-Dichlorcethene	10.00	غ. <u>. 5</u>	27. u	121, 11
10. In Helach lordet hims	$< 25.7 \mathrm{fm}_\odot$	< .5	⊈,,ni	12.11
		_		
11. træns-1.2-Opinlomethere	$< 2^{\epsilon}$, $ U_{i} $	⋖ .5	<u></u>	.7. :1
12. (Milemform	11 m	< .5	\mathbb{Z}, \mathfrak{N} .	(<u>.</u>
13 - 1, 24 Lactorethare	11, 6	<	<u></u>	127, 11
	[,[]]	ر از ک	11	<u>.</u> * 11
15. heron tetrumber, k 🗸 🦠	₹20,00	< .*	11	
In . Franchish connectives	$< \frac{1}{2} \cdot 11^{\circ}$	4 .:	E. H	
เป็น 1,124 เล่าใหญ่ของระบบ	4.2%, 11	4	[7] 11	
on the Community (1995) The Community of the Community (1995)				•
		·		· ·
The literature	11 7	+ 5	j., ti	
in Berlinde	1 /41	41 , 7	1.0	
T.P.p.no plopmettese	28, 11	e i	- . ;	
on in the constant of the con		4	· · · · · · · · · · · · · · · · · · ·	
		** . *		
Die 1919 Delmichten werden	::	• . "	* 4:	
The state of the s		. * 4		_

6100 North Austin Avenue Morton Grove, 7, no 5,60053-3203 728-967-6666 FAX: 708:968-6735

LABORATORY REPORT

- · · · · · - ·

Warmyn Inc. P.O. Box 5385

Madison, Wisconsin 53705

Report Date: 2/23/93 Sample Received: 2/3/93

Project Name: American Chemical Services Sample Description: 18.5-46532-35-S1

Sample No.: 41033

Compound	Concent ra Found		Method Detection Limit (MOL)	Quantitation Limit
<u>Purpeables</u>	<u>Sample</u> (ppb)	<u>Blank</u> (ppb)	ue/kg (pdb)	mayer (bup)
25. Bromoform	<25,000	<-	25.000	125.00
26. Tetrachlomethere	874,000	<`.⁻	\mathbb{Z}, \mathfrak{M}	125,000
27. 1.1.2.2-Tetrachloroethere	<25,000	<3.5€	25.000	:25,00
29. To luene	783,300	4, .5	25,000	125,00
29. Chilombennene	<25.000	ج) . ·	25,500) <u>25</u> (30)
30. Ethylbenzate	$(4\pi)(40)$	< ."	2.00	: 25.0 t
31. Xv lenes	\$30,000	4) .c	100,000	500.00
32. Styrene	<000,0002	¢ •	139,000	500,000
33. cis-12-dichloroethany	<100.000	4	12.003	500,00
34. Abetime	113,000	<	100,000	500,000
OS J. MEK	41,400	٠ ٠	m . The m	500, 1
36. MIK	$\langle 0 \rangle, \langle 0 \rangle$	• : *. •	:10.0ag	50.00
ST. Newsy 1 Holltone	<[4], [1]	<i>i</i> .	· • • • • • • • • • • • • • • • • • • •	5.00

All results excremed as uph unless otherwise in lasters.

Mothedo perferent servertion to SW-Min. Their metres of milese satisficity (id Westell)

#100 North Austin Alshous Morton Brove, Lindin 50050 v. 03 708 967-6666 FAX: 708 967-6736

LABORATORY REPORT

31073

Wardyn Inc. P.O. Fox 5385

Madison Wisconsin 53705

Report Date: 2/24/93 Sample Received: 2/3/93

Project Name: American Chemical Services Sample Description: 18.5-46532-35-S1

Sample No.: 41033

	Compound Base/Neutral Extractables	Concen Found Sample		Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/km mm
		ppb`	ppb.		
1.	N-Nitrosodimethylamine	<700	< ~	700	
2.	Bis(2-chloroethyl)ether	<50°	<0.5	50C	· ·
∶ .	1.3-Dichlorobenzene	<	₹7.4	40 0	
÷ .	1.4-Dichlorobensene	<4 j	< 	400	- -
5.	1.2-Dichloropenzene	-: ↓,	<	493	
	Pis/2-chicroisopropyl/ether	* \$ 1 h	s1.2	:200	
	Hexachioroethane	<#***	<0.7	700	:
	N-Nitrosodi-n-propylamine	4157	<1.5	1500	
	Nitrobenzene	.: 3	<1.:	1800	:
• ,5	isophorone	4300	<2.3	300	
	Pis(2-phloroethoxy)methane	4.2.5	< . 4	400	•
: 2 .	1.2.4-Trichlerobennene		$\langle \zeta_{ij}, A \rangle$	40]	•
٠.	Naphthaleng	4 € (11)	4 .13	130	
	Herachloromitaliene			50.	
	Hexaphingney Cymnia Gere		5	`; s	
•	2-thioropaphth were	• •		<u>,</u>	
: - `	Acenaphthylers		4 , 1	કે કહે	
	Constitution	-		<u>.</u>	
٠.	Landinitr to care			·.	
	Acres aphilians	<u>:</u>			
	2.4 Tenata to Jene			· ·	
	House the second of the second		:	; [‡] ;	
			. 🕳	:	

6100 North Austin Austin Morton Grove - Indik 6005a 100a 108 967-6666 FAX: 108 967-6135

LABORATORY REPORT

Warzyn Inc. P.O. Box 5385

Madison Wisconsin 53765

Project Name: American Chemical Services

Sample Description: 18.5-46532-35-S1

Sample No.: 41033

Peport Later 2 (22) - Sample Federved: 2 (20)

	Compound Base/Neutral Extractables	round	ration In <u>Blank</u>	Method Detection Limit (MDL) ug/kg (ppb)	Quantita: Limit un/ka
		pph)	(dqq)		
	N-Nitrosodiphenylamine	<500°	<1.5	\$40	
	Diphenylhydrazine	to? ``</td <td></td> <td>in).</td> <td></td>		in).	
27.	4-Bromophenyl phenyl ether	< 4000	<0.5	••	
28.	Hexachlorobennene	<:	<1.4		
29.	Phenanthrene		40,13	: 3 : 3	
39.	Anthracene	413.	<0.13	::	
31.	Di-n-butylphtha.stg	33773	<0,5	500	
	Fluoranthene	6131	<0.13	:3	
	Benzidine	447.5	<4.1	4 [→] 5.	
34,	Pyrene	<130	<0.13	13.	
	Butyl benzy: phinalers	**************************************	*: [_ =	: •	
	Benzo(a)anthra retie	<130	< .13	: :	
3 - .	Chrysene	7230	& . <u>13</u>	13	
	3.3 ¹ ==1:01: properties	7230 417	215	; - .	
	Fis 2-ethylberyl princlate		40.5	* 5 	
.	Firm-octylphths.ste	#4. ⁻	<4. ⁻	; -	
	Benzo bifluste there		< .13	<u>.</u> -	
42.	Fendo Kafilashartsere	403.	40.13		
43.	Fenge Simpleme		< .13		
	indens (1.1.3-2) syrets		41 113	;: :	
	Tithen to skill at the seer of	*.	<		
<u>.</u>	Application of the second	-	4.11		

All results expressed as ppt online of perwise inflicators.

Motheds performed a vierdina to Skesker "Test Motheds for Enablic es as a

eros verm Austri Austri Memen Greuk, in ill misse succ Melektrekke FAX: 706-967-6735

LABORATORY REPORT

Wardyn Inc. F.C. Box 5385

Madison. Wisconsin 537 5

Report Date: 2 1 - 0 Sample Received: 200 -0

Project Name: American Chemical Services

Sample Description: 18.5-46532-35-S1

Sample No.: 41033

Compound Acid Extractables	Foun	tration d In <u>Blank</u>	Method Detection Limit (MDL) ug/kg (ppb)	Quantitation Limit ug/kg (PC)
Fhenol 2-Chiorophenol	(5400 (640)	<0.4 <0.5	407 99]	: *
2-Nitrophenol 2.4-Dimethylphenol	40,800 40,500	<:: <::	1990) 500	: : :
2.4-Dachtorophen : p-Chloro-m-cres :		<1.7 <2.2	170. 220.1	: :
2.4.6-Trichlorepten 2.4-Dinitrophen:	42200 894-97	K2.1 K4.5	2200 2200	:
4-Natrophen () 4.6-1ingtro-secres ()	< 3 + 10) et + 5 ()	<\$ < \$. ·	390 8801	
Pentachik roptum. Sup		≼7.β ≪1.	73 ° 1 ° N	F 1
.uprenyi ether de 18 124				

to report extremely out only otherwise inflate .

Methals performed according to Western Cent Methodo for evaluation of

8100 North Austin Alen (2) Morton Grove (1 no s 60063 3003 108-967-6666 FAX: 708, 967-6735

LABORATORY REPORT

4:07:

Wattyn inc. 9.0. Box 5085 Madison, Wisconsin 53705

> Feport Date: 2/23/93 Sample Received: 2/3/93

Project Name: American Chemical Services Sample Description: 18.8—46532—45—51

Sample No.: 41034

Compound	Concentral Found II		Method Detection Limit (MDL)	Quantitation Limit	
Purgeables	<u>Sample</u> (ppb)	<u>Blank</u> (ppb)	<u>(dqq) gy/gu</u>	m\v. (tq.	
1. Chilorone thane	5.340,000	<1.0	60.000	30, 11	
2. En ariamet hane	5,400,000	<	60.000	7.1 (4)	
3. Vinyi chloride	<60,000	4).7	60.000		
4. Chilomethane	490,900	<.⁻	60,000	5.10.10	
5. Dichloromethane	ker jih	. ≇1.3	$(\widetilde{\mathcal{A}})_{**}(\widetilde{\mathcal{A}})$	1.1.	
n. Aprolein	13.00	45.4	180.000	4.00	
". Acrylonitrile	< 60.00	45.C	160,000	8.1.11	
8. Trichlorofluoramethane	. <60.000	< .5	$\omega.\omega$	5 C. 11	
9. 1.1-Dichleroethene	<50,000	< .5	50,30°	54.11	
10. 1.1-Oldh lordet hane	<60,000	<0.5	60,000	500,000	
11. trans-1.2-Lichtometrum	$<\omega_{\rm total}(\Omega)$	4.5	60.10°	51,11	
II. Wiordiam	राष्ट्र (111)	₹ 1,5	$\mathfrak{S}.\mathfrak{W}$	3.1.11	
	ta, tit	₹'.	ri , iii	5 (1)	
in the later to the settless	ja,7 ruju	•:	4. 11		
if, amon tetrachionide	en, fil	4.7	ή, π	1 .	
in, he maisunlanasethese	Cr. 11	4 ,*	$\alpha \sim 11$	5 t , t	
17. (v.24) (dr.) myngene	447, 14		n , H		
	C1 11	4 .5	1. 11	1	
្ត ប៊ុះស្រាប់ ១ មូបនោម	, 4 , 11	: . ⁻	, 11	. : .	
Section 1999	The state of	: -	v. tr		
្រាស់ ពេក្សា ពេក្សា	1. 1. 11		v , f f	:	
		·: ·	÷ , 11	• .	
The state of the state	1 3 3 1 4 P		· . ti		
The second second		4	(11		
		* **	•		

5100 North Austin Avenua Marton Gravescond sibbles (30 or 108-967-6666 FAX 1706-967-6735

LABORATORY REPORT

 $r_0(0) = 0$

Warron Inc. F.C. Roy 5385

Midison. Wisconsin 53705

Report Date: 2/23/93 Sample Received: 2/3/93

Project Name: American Chemical Services Sample Description: 18.8—46532—45—51

Sample No.: 41034

Compound	Concent Foun		Method Detection Limit (MDL)	Quantitation Limit
Purezables	Sample	Blank	ug/kg (ppb)	क्ति (प्रक
	(ppb)	(क्क्)		
25. Brawform	< 0.20.000	<4,1	: 20,000	$c_2(1)$, $f(t)$
In. Tetrichloroethene	5,900,000	4°,7	50.000	500,00
27. il il 2.2-Tetrachloroe tranc	<0.20,000	K \$, +	: 20,000	6 P. OF
Die Thilume	353.01	₹1.5°	50.000	5 (1)
20 Montenae	αγ.γYt		n),000	31,11
No. Ethylbengere	150.10	< .⁺	10,000	[T , 13
31. Ny lenes	1,950,000	₹	ചാ.000	$N_{i}^{-1}(\Omega)$
32. Styrene	<\$245,000	٠ ٠ .٠	240,000	5.00
33. Vinyl Acetote	kQ46 ,000	·1 ,	240.000	1,20.0
34. Acetime	Section 1	∢ ,-	500,000	2.5000
38. Mek	4, 11 , 1	4	249,000	1.31 × 1
M. MIK	30.4 jus	4.	240,000	1.200.
To hear to will be	e ĝ⊈oj ŭa	·= .	240,00	1,200
No Democracie		: •	<u> </u>	· <u>. · .</u> .

Million and Considerable and Conjugate in New York Continues and Conjugate Co.

Marting them much experiments the Mester Theory of the compact of the Arting Solid Wester.

8100 North Austria 4 to 40 Morton Grove, 17 1 to 1000 300 3 708 967-6666 FAX 708 967-6735

LABORATORY REPORT

Warzyn Inc. P.O. Box 5385

Madison Wisconsin 53705

Project Name: American Chemical Services

Sample Description: 18.8-46532-45-S1 Liquid Phase

Sample No.: 41034

Report Date: 2,24 % Sample Received: 2/3 %

	Compound Base/Neutral Extractables	Concent Found <u>Sample</u>	l In <u>Blank</u>	Method Detection Limit (MDL) ug/L (pph)	Quantita: Limit un/Limit	
	At Attachment 1 - 11 - 12 - 12	(ppb)	(ppb) <0.7	200		
	N-Nitrosodimethylamine Bis(2-chloroethyllethet	<100 <500	<0.5	700 200		
	1.3-Dichlorobengene	<400 <400	<0.2 <0.4	500 400		
٠,٠.	1.3~b1ch1otohengene	46 mar. (1995)	<∵.⊶	بار، د -		
4.	1.4-Dichlorobensen:	<4 / j	<0.4	4 %		
	1.2-Dichlorobenzen	*C + ; :	₹5.5	\$ ₹ 20 €		
5.	Bis:3-chioreisquapt. etien	5.1 <u>1.</u> 775	<1. <u>1</u>	: 2 '		
~ .	Hexach!oroethan=	<70v	-	~ .		
٤.	N-Nitrosodi-n-propy. Jaine	<1500	<1.5	1500		
	Nitrobenzene	<1800	< : . •	181.		
10	Isophorone	- 2 7 07	<1.5	3.30		
	Bis/2-chloroethoxy methum	<u>-</u> < - 40	< 4	•		
	1.2.4-Trichionomenome	<4.7	€, .4	****		
: 3	Naphthalene	44738	<^.13	131		
	Hexachiorobut disass	4500	4 . .			
	Hex chlorocy illustration	4 5 30	* · · · ·	. , 5		
		. , ,		•	••	
	2-0r. promagniths on	•, •	4 . j			
	Acenaphthylene	K(1,3)	<	• •		
:=.	Timethylphtheliste	4. To 1	·: -	~		
	2.6-Dimitratelone	<i></i>	<	;		
	Asenaphthene			•		
	2.4-taritrot come	. ") "	£ .7	- · · · · · · · · · · · · · · · · · · ·		
~ ~	Filmere			• •		
	The tax approximation		•, .			
	4~ municipated ()	• :		· •		

erdő fysten Aukeric Aukeric Marton Groupe, i no si si szás szó 706. génkésés RAX i nos génkérás

LABORATORY REPORT

Warzym Inc. F.C. Box 5385

Madison Wisconsin 53705

Project Name: American Chemical Services

Sample Description: 18.8-46532-45-S1 Liquid Phase

Sample No.: 41034

.vjett lete. 2 2+ .pampur Pelervein 2 1 -

	Compound Base/Neutral Extractables	Found <u>Sample</u>	<u>Blank</u>	Method Detection 'Limit (MDL) ug/L (pph)	
2.5	An Anna III and an all III an	(dgg)	t bbp î		
	N-Nitrosodiphenvlamine	<5.10	<"	w ·	
	Diphenylhydrazine	•, ••	<:·		
2 ~ .	4-Bromophenyl phenyl ether	400 Million	<';	•	
25.	Hexachiorobenzene		<1. ·		
24.	Phenanthrene		<		
	Anthracene			• • • •	
			• •		
31.	Distributylphtolist	ž.	< .5	4	
32.	Fluoranthene		< 1.13	: 3	
33.	Benzidine	:~	<4.7		
3.4	Pyrene	; }			
	Eutyl benzyl pathalara	•		• •	\sim
			4	•	
37.	Fench alanth: come	• •	4		
	Chrysene	• . ~	<		
	3.3 ¹ +=0.00h1		· · · · · · · · · · · · · · · · · · ·		
	High Deathyrib and mothers are				
			•		
		_			
			•	1.7	
	remarks flattering				
÷	Benzok fladanthar		•*		
.1 *	Estato a pytester				
•	ne en en en en en en graf en	•			
• • •	18 188 1.1.3-1.		• ;		
	The second			•	
	ment of the professional control				

ACC results expressed in mile that it is required after.

8100 North Austin Awnus Morton Grove - Incly 60/053/3003 708/967-6666 FAX: 708/967-6735

LABORATORY REPORT

5000

Wardyn Inc. P.O. Box 5385

Madison, Wisconsin 53705

Report Date: 2/2: Sample Received: 2/3/30

Project Name: American Chemical Services

Sample Description: 18.8-46532-45-S1 Liquid phase

Sample No.: 41034

	Compound -Acid Extractables	Four	ntration nd In Blank	Method Detection Limit (MDL) ug/L (ppb)	Quantitation Limit ug/L (pp)
	Phenol 2-Chlorophenol	<400 <900	≪0.4 ≪≨	400 400	1 1961 1071
	2-Mitrophenol 2.4-Dimethylphenol	41801 4 5 01	\$1.5 \$.5	1500 500	: 21
	2.4-Dichlorophens. p-Chloro-m-cresol	<171 <2200	41.7 41.2	100 200	: : et
	2.4.6-Trichlorophen 1 2.4-Cimitrophenol	42201 49501	<3.1 <4.5	200 4800	1 + 4 1 + 4 1 + 4
	4-Mitrophenol 4.b-Linitro-b-ored	ૡ ૢ૽ૡૢઌ૽ૢ૽૽ ૡઌઌ૽ૢ૽૽ૺૢ	₹3.34 44.4	35.0 60.1	5 6 5 5 1 1 1
	Pentachlorophenol BOB 1248	<7301 1940 ()	<1.3 <1.1	78%) 1000	5 4 1
·	iprænsilætek.	. *	s . I	•	

A line of the expression of a light under the residence of directeds.

with a court read a common of the same time to with a close by a paragraph of the

HIGO North Austin Aven w Morton Grove - Indish halisa Jil Toel BeTvehed PAW (TOE) BeTvel (35)

LABORATORY REPORT

Wardyn Indu Euro Esso 5325

Malison Wisconsin 53705

Project Name: American Chemical Services

Sample Description: 18.8-46532-45-Si Solid Phase

Sample No.: 41034

Report Date: 2 24/97 Sample Redervel: 2 3/93

Compound Base/Neutr	al Extractables	Fo Samp		Method Detecti Limit (MDL) ug/kg (ppb)	Limit
1. MaNitrosed	ingthylamina	PP**	PP ¹	351	
L. Bis 2-chio.		-22	₹ ⁷ ,5	250	
3. 1.3-Dichlo	•	12	< ,≟	274	•
4. 1.4-Fichler	robenzene	<u>, i</u>		<u> </u>	
5. 1.2-5;chio:	rohendene	., ≟ ₹	€.	4500	
rulin 19-imle	TOLESTOPPONY of wi	.**	·	,	
To her contores	rthure			÷	
S. N-Mitrosodi	(-n-propylabine	475	•11.5	75.	
 Nitrobenzer 	਼	*C * * * *	• : .	• • •	
l . Isopherone				: 5	
	routhoxy a eth we	. 2	-	•	• - '
11. 1.1.4-Tric	il or wentens	·· <u>*</u>	·	-	
13. Norhthalene	•		·	. 5	
Tall Hospith Star			•	<u></u>	
the state of the s	gainen dien	. : 7 *	٠	≟ 7₹	
	n this entre				
The secretary.				:	
in the transfer of			•	· 5	
es in the state	1	. :		4.1	
engiite		•		•	
1.1 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1					
		-			
	e e produce				
. 1 - + - +			:		

Table :
Summary of Sitewide Soil Remediation Levels and Concentrations
American Chemical Services NPL Site
Griffith, Indiana

Average Concentration (mg/kg) at: Rem. Level Minimum Maximum Still Bot. Off-Site Kapica' Positive 6 Cont. Trimt Lag. Compound (mg/kg) (mg/kg) (mg/kg) Cont Pazmey Detects Volatiles (135 samples) Vinvl Chloride 0.031 2.9 2.9 nd nđ 2.9 กป 2,700 0.001 2 0.0015 0.95 nd 0013 Chloroethane Methylene Chloride 6.2 0.012 260 nd 136 31.5 0.106 13 2,400 0.018 34,000 2.9 10 33 1.549 2.70 Acetone 0.098 0.003 390 1,1-Dichloroethene nd nd 117 4 nd 120 21.9 5.5 250 0.002 0.606 5.55 7.26 1,2-Dichloroethene (cis) 2,800 0.97 Chloroform 9.5 0.001 286 223 0.004 40 1.2-Dichlorocthane 0.64 0.001 440 0.48615.8 34.6 0.044 2-Butanone 620 0.004 99,000 0.102 59.5 3.760 30 2.300 1.1.1-Trichloroethane 0.001 150,000 885 1.093 0.217 5.679 Carbon Tetrachloride 0.38 530 3.600 2,065 nd nd nd ! 3 1,2-Dichloropropane 0.42 100.0 23 nd nd 3.04 0.027 19,000 Trichloroethene 5.3 0.003 5.3 134 927 TO 6 400 0.035 2.71 94.6 1,1.2-Trichloroethane 0.51 0.001 ೧ಡ Benzene 0.001 7,100 205 97.3 4.1 i 235 2.536 4-Methyl-2-pentanone 0.002 61,000 0.119 630 63.6 46,000 431 Tetrachloroethene 1.1 0.002 266 2,161 115 0.779 3.9 1.1.2.2-Tetrachloroethane 0.28 0.002 nd 0.017 nd ¢ . - . Toluene 5.000 0.001 200,000 5,293 1.704 3,957 1,390 0.002 66 0.002 1.000 0.104 177 Chlorobenzene 150 3:2 Ethylbenzene 1.300 0.002 23,000 194 751 943 0.001 310 3.1 54 87 1.7 Styrene 25.000 791 0.002 100,000 1.978 Xylenes (mixed) 3,735 1,433 Semi-Volatiles (85 samples) :3 = 0.099 bis (2-chloroethyl) ether 0.027 200 ad 43 ಣತ 2.4 0.046 11 0.35 3 15 1.4-Dichlorobenzene n1 ::: Isophorone 0.041 3,500 46 314 443 35.5 0.054 1.882 13.5 1.2.4-Trichlorobenzene ta 15 ::3 2,400 0.054 19.5 ç÷ Naphialene 32 232 : -150 - 44 0.055 33 Hexachlorobuuidiene 0.36 ಣತ 2,6-Dinitrotoliuene 0.044 3.5 3.5 ::.: ad :: ुऱ्य 2.4-Dinitrotoluene 0.044 0.84 0.50.54 27 nd: 12 0.18 53 :: n-Nitrosodiphenviumine 0.25 !1 0.018 3.931 5 97 Hexachloropenzene n : 643 0.045 44 3 14 Pentachlorophenol 77. 9.039 11: his 2-emviliexvi-Phinante 1.1 14,900 .526 327 22.8 2,300 0.039 3,400 994 di-n-butylphumlate ~: : 0.0025 cPAHs. 0.254

Fanie 1
Summary of Sitewide Soii Remediation Levels and Concentrations
American Chemical Services NPL Site
Griffith, Indiana

•				Average	Average Concentration (mg/kg) at:			
	Rem. Level	Minimum	Maximum	On-Site	Still Bot.	Off-Site	Kapica	Trans
Compound	(mg/kg)	(mg/kg)	(mg/kg)	Cont.	Trimi Lag.	Cont	Pazmey	Dete
Pesticides/PCBs (130 samples)								
alpha-BHC	0.0047	0.33	0.33	nd	nd	0.33	กป	
beta-BHC	0.016	0.8	0.8	nd	nd	0.8	nd	
gamma-BHC (Lindane)	0.046	1.1	1.1	nd	1.1	nd	กป	:
Endosulfan 1	0.63	0.011	1.2	0.0115	1.2	nd :	0.042	
Aldrin	0.002	0.013	7.7	nd	nd	3.86	0.088	2
Heptachlor Epoxide	0.0033	0.013	0.013	nd	nd	0.013	nd	
4,4'-DDE	0.16	0.88	0.88	nd	nd	0.88	nd	·····
4,4'-DDD	0.12	0.025	3.3	nd	nd	3.3	77.7	
4,4'-DDT	0.088	0.05	12	0.07	8.35	1.7	nd	
PCBs	2	0.99	1,435	109	117	234	82.7	:
Metals (52 samples)					;	······		* '
Antimony	15	3.7	152	5.3	28.75	46.24	41.9	
Barium	2.600	57.4	6,400	515	466	1,462	2.313	
Cadmium	51	0.05	1.700	0.72	14.73	102	5 36	
Chromium (VI)	1,400	4.5	3,750	32	196	253	792	• • •
Lead	500	2.3	17,200	112	842	1.067	4,650	
TTCs				······································				
Propenyl Benzenes	320			···				
Ediyl Methyl Benzenes	4,900							
Diethyl benzenes	1.300 -			· · · · · · · · · · · · · · · · · · ·				-
Methyl Propyl Benzenes	490							
Dimethyl Ethyl Benzenes	1,300							
Oxygenated Benzenes	1,2 %							
Nitrogenated Benzenes	÷ 2							
Halogenated Alkanes	2.3.5							
n-chain Alkanes	760							•
Branched Alkanes	<u></u>			<u> </u>				
Methylated Napthalenes	85							
Cyclic Ketones								
Non-Cyche Acids	1/9 🕏							

Notes:

- 1. This table includes compounds for which sometimes in over move peen presented in in the ACS ROD (Table 3).
- 2. Concentrations at ACS were taken from 10h15 74 for agree 10h15 7 or to the BRA.
- 3. Total chromium and prail 1.2. distance commencial control of the conditions
- 4. Average concentration shows its the arithmetic means of proceed a observation by the each area.
- 5 and indicates the compound was not detected in that a cut of

ITABLE CORRECTORS CHOOLU